The Cerebellum

, Volume 13, Issue 1, pp 151–177 | Cite as

Consensus Paper: The Cerebellum's Role in Movement and Cognition

  • Leonard F. Koziol
  • Deborah BuddingEmail author
  • Nancy Andreasen
  • Stefano D’Arrigo
  • Sara Bulgheroni
  • Hiroshi Imamizu
  • Masao Ito
  • Mario Manto
  • Cherie Marvel
  • Krystal Parker
  • Giovanni Pezzulo
  • Narender Ramnani
  • Daria RivaEmail author
  • Jeremy Schmahmann
  • Larry Vandervert
  • Tadashi Yamazaki


While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum.


Cerebellum Cognitive Neurodevelopment Cognition Movement Motor Language Executive Function 


Conflict of Interest Statement

The authors have no conflicts of interest associated with this manuscript.


  1. 1.
    Schmahmann JD. The cerebellum and cognition. London: Academic; 1997.Google Scholar
  2. 2.
    Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.PubMedGoogle Scholar
  3. 3.
    Baillieux H, Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: Insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.Google Scholar
  4. 4.
    Kuper M, Dimitrova A, Thurling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—An fMRI study. Neuroimage. 2011;54(4):2612–22.PubMedGoogle Scholar
  5. 5.
    Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De LM, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.PubMedGoogle Scholar
  6. 6.
    Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50.PubMedGoogle Scholar
  7. 7.
    Parvizi J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci. 2009;13(8):354–9.PubMedGoogle Scholar
  8. 8.
    Manto M, Haines D. Cerebellar research: two centuries of discoveries. The Cerebellum. 2012;11:446–8.Google Scholar
  9. 9.
    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.PubMedGoogle Scholar
  10. 10.
    Sokolov AA, Erb M, Grodd W, Pavlova MA. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cerebral Cortex. 2013;(in press).Google Scholar
  11. 11.
    Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.PubMedGoogle Scholar
  12. 12.
    Middleton FA, Strick PL. Basal ganglia and cerebellar output influences non-motor function. Mol Psychiatry. 1996;1(6):429–33.PubMedGoogle Scholar
  13. 13.
    Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.PubMedGoogle Scholar
  14. 14.
    Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. Neuroimage. 2008;43(2):388–98.PubMedGoogle Scholar
  15. 15.
    Shiffrin RM, Schneider W. Automatic and controlled processing revisited. Psychol Rev. 1984;91(2):269–76.PubMedGoogle Scholar
  16. 16.
    Blomfield S, Marr D. How the cerebellum may be used. Nature. 1970;227(5264):1224–8.PubMedGoogle Scholar
  17. 17.
    Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70.PubMedGoogle Scholar
  18. 18.
    Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.Google Scholar
  19. 19.
    Greger B, Norris S. Simple spike firing in the posterior lateral cerebellar cortex of Macaque Mulatta was correlated with success-failure during a visually guided reaching task. Exp Brain Res. 2005;167(4):660–5.PubMedGoogle Scholar
  20. 20.
    Gilbert PF, Thach WT. Purkinje cell activity during motor learning. Brain Res. 1977;128(2):309–28.PubMedGoogle Scholar
  21. 21.
    Ojakangas CL, Ebner TJ. Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey. J Neurophysiol. 1992;68(6):2222–36.PubMedGoogle Scholar
  22. 22.
    Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11(10):1185–92.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Schmahmann JD, Rosene DL, Pandya DN. Motor projections to the basis pontis in rhesus monkey. J Comp Neurol. 2004;478(3):248–68.PubMedGoogle Scholar
  24. 24.
    Glickstein M, May III JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235(3):343–59.PubMedGoogle Scholar
  25. 25.
    Brodal P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain. 1978;101(2):251–83.PubMedGoogle Scholar
  26. 26.
    Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20(1):214–28.PubMedGoogle Scholar
  27. 27.
    Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8.PubMedGoogle Scholar
  28. 28.
    Ramnani N. Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum. 2012;11(2):366–83.PubMedGoogle Scholar
  29. 29.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedGoogle Scholar
  30. 30.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.PubMedGoogle Scholar
  31. 31.
    Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289(1):53–73.PubMedGoogle Scholar
  32. 32.
    Schmahmann JD, Pandya DN. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol. 1993;337(1):94–112.PubMedGoogle Scholar
  33. 33.
    Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199(3):175–8.PubMedGoogle Scholar
  34. 34.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.PubMedGoogle Scholar
  35. 35.
    Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17(1):438–58.PubMedGoogle Scholar
  36. 36.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.PubMedGoogle Scholar
  37. 37.
    Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49(3):2045–52.PubMedGoogle Scholar
  38. 38.
    Bunge SA. How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn Affect Behav Neurosci. 2004;4(4):564–79.PubMedGoogle Scholar
  39. 39.
    Platt ML, Glimcher PW. Neural correlates of decision variables in parietal cortex. Nature. 1999;400(6741):233–8.PubMedGoogle Scholar
  40. 40.
    Wallis JD, Anderson KC, Miller EK. Single neurons in prefrontal cortex encode abstract rules. Nature. 2001;411(6840):953–6.PubMedGoogle Scholar
  41. 41.
    Wallis JD, Miller EK. From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol. 2003;90(3):1790–806.PubMedGoogle Scholar
  42. 42.
    Miller EK, Nieder A, Freedman DJ, Wallis JD. Neural correlates of categories and concepts. Curr Opin Neurobiol. 2003;13(2):198–203.PubMedGoogle Scholar
  43. 43.
    O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.PubMedGoogle Scholar
  44. 44.
    Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. Journal of Neuroscience. 2011;31(6):2305–12.Google Scholar
  45. 45.
    Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.PubMedGoogle Scholar
  46. 46.
    Voogd J. Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK, editors. The human nervous system. 2nd ed. San Diego: Academic; 2004. p. 321–92.Google Scholar
  47. 47.
    Ito M. The cerebellum and neural control. New York: Raven Press; 1984.Google Scholar
  48. 48.
    Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13(23):189–214.Google Scholar
  49. 49.
    Schmahmann JD. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2(9):362–71.PubMedGoogle Scholar
  50. 50.
    Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedGoogle Scholar
  51. 51.
    Schmahmann JD, Pandya DN. The cereberocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 31–60.Google Scholar
  52. 52.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedGoogle Scholar
  53. 53.
    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.PubMedGoogle Scholar
  54. 54.
    Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11(2):336–51.PubMedGoogle Scholar
  56. 56.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedGoogle Scholar
  57. 57.
    Schmahmann JD, MacMore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162(3):852–61.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.PubMedGoogle Scholar
  59. 59.
    Snider RC, Stowell A. Receiving areas of the tactile, auditory, and visual systems in the cerebellum. J Neurophysiol. 1944;7:331–57.Google Scholar
  60. 60.
    Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.PubMedGoogle Scholar
  61. 61.
    Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(Pt 5):1041–50.PubMedGoogle Scholar
  62. 62.
    Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.PubMedGoogle Scholar
  63. 63.
    Chheda M, Sherman J, Schmahmann JD. Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology. 2002;58 suppl 3:356.Google Scholar
  64. 64.
    Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130(Pt 10):2646–60.PubMedGoogle Scholar
  65. 65.
    Geschwind DH. Focusing attention on cognitive impairment in spinocerebellar ataxia. Arch Neurol. 1999;56(1):20–2.PubMedGoogle Scholar
  66. 66.
    Thompson RF, Bao S, Chen L, Cipriano BD, Grethe JS, Kim JJ. Associative learning. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 151–89.Google Scholar
  67. 67.
    Parvizi J, Joseph J, Press DZ, Schmahmann JD. Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Mov Disord. 2007;22(6):798–803.PubMedGoogle Scholar
  68. 68.
    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedGoogle Scholar
  69. 69.
    Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34(5):781.PubMedGoogle Scholar
  71. 71.
    Allen G, Courchesne E. The cerebellum and non-motor function: clinical implications. Mol Psychiatry. 1998;3(3):207–10.PubMedGoogle Scholar
  72. 72.
    Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMedGoogle Scholar
  73. 73.
    Lidzba K, Wilke M, Staudt M, Krageloh-Mann I, Grodd W. Reorganization of the cerebro-cerebellar network of language production in patients with congenital left-hemispheric brain lesions. Brain Lang. 2008;106(3):204–10.PubMedGoogle Scholar
  74. 74.
    Riva D. Higher cognitive function processing in developmental age: specialized areas, connections, and districuted networks. In: Riva D, Njiokiktjien C, Bulgheroni S, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2011. p. 1–8.Google Scholar
  75. 75.
    Schmahmann JD, Pandya DN. Fiber pathways of the brain. USA: OUP; 2009.Google Scholar
  76. 76.
    Jissendi P, Baudry S, Baleriaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neuroradiol. 2008;35(1):42–50.PubMedGoogle Scholar
  77. 77.
    Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci. 2010;4:21.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Limperopoulos C, du Plessis AJ. Disorders of cerebellar growth and development. Curr Opin Pediatr. 2006;18(6):621–7.PubMedGoogle Scholar
  79. 79.
    Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051–61.PubMedGoogle Scholar
  80. 80.
    Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, D'Arrigo S. The role of the cerebellum in processing higher cognitive and social functions in congenital and acquired disease in developmental age. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 133–43.Google Scholar
  81. 81.
    Bolduc ME, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol. 2009;51(4):256–67.PubMedGoogle Scholar
  82. 82.
    Riva D, Pantaleoni C, Nicheli F, Bulgheroni S, Bagnasco I. Cervelletto e funzioni psyichiche superiori in eta evolutiva: risultati preliminari in una serie di bambini con ipoplasia cerebellare congenita. Giorn Neuropsich Eta Evol. 2001;21:252–6.Google Scholar
  83. 83.
    Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45.PubMedGoogle Scholar
  84. 84.
    Riva D, Annunziata S, Contarino V, Erbetta A, Aquino D, Bulgheroni S. Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study. Cerebellum 2013;(in press).Google Scholar
  85. 85.
    Riva D, Giorgi C. The contribution of the cerebellum to mental and social functions in developmental age. Fiziol Cheloveka. 2000;26(1):27–31.PubMedGoogle Scholar
  86. 86.
    Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lovblad KO, Ridolfi LA, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126(Pt 9):1998–2008.PubMedGoogle Scholar
  87. 87.
    Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43(10):685–91.PubMedGoogle Scholar
  88. 88.
    Paquier P, van Mourik M, van Dongen H, Catsman-Berrevoets C, Brison A. Cerebellar mutism syndromes with subsequent dysarthria: a study of three children and a review of the literature. Rev Neurol (Paris). 2003;159(11):1017–27.Google Scholar
  89. 89.
    Riva D. The cerebellar contribution to language and sequential functions: evidence from a child with cerebellitis. Cortex. 1998;34(2):279–87.PubMedGoogle Scholar
  90. 90.
    Tavano A, Fabbro F, Borgatti R. Speaking without the cerebellum. In: Schalley AC, Khlentzos D, editors. Mental states. 1st ed. Amsterdam: John Benjamins Publishing Company; 2007. p. 171–90.Google Scholar
  91. 91.
    Bolduc ME, du Plessis AJ, Sullivan N, Khwaja OS, Zhang X, Barnes K, et al. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol. 2011;53(5):409–16.PubMedGoogle Scholar
  92. 92.
    Ronning C, Sundet K, Due-Tonnessen B, Lundar T, Helseth E. Persistent cognitive dysfunction secondary to cerebellar injury in patients treated for posterior fossa tumors in childhood. Pediatr Neurosurg. 2005;41(1):15–21.PubMedGoogle Scholar
  93. 93.
    Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2–6.PubMedGoogle Scholar
  94. 94.
    Burk K. Cognition in hereditary ataxia. Cerebellum. 2007;6(3):280–6.PubMedGoogle Scholar
  95. 95.
    Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129(Pt 9):2341–52.PubMedGoogle Scholar
  96. 96.
    Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009.Google Scholar
  97. 97.
    Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47(1):81–100.PubMedGoogle Scholar
  98. 98.
    Lalonde R, Filali M, Bensoula AN, Lestienne F. Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem. 1996;65(2):113–20.PubMedGoogle Scholar
  99. 99.
    Lalonde R, Strazielle C. Motor performance and regional brain metabolism of spontaneous murine mutations with cerebellar atrophy. Behav Brain Res. 2001;125(1):103–8.PubMedGoogle Scholar
  100. 100.
    D'Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10(3):600–10.PubMedGoogle Scholar
  101. 101.
    Kameya T, Abe K, Aoki M, Sahara M, Tobita M, Konno H, et al. Analysis of spinocerebellar ataxia type 1 (SCA1)-related CAG trinucleotide expansion in Japan. Neurology. 1995;45(8):1587–94.PubMedGoogle Scholar
  102. 102.
    Spadaro M, Giunti P, Lulli P, Frontali M, Jodice C, Cappellacci S, et al. HLA-linked spinocerebellar ataxia: a clinical and genetic study of large Italian kindreds. Acta Neurol Scand. 1992;85(4):257–65.PubMedGoogle Scholar
  103. 103.
    Giunti P, Sweeney MG, Spadaro M, Jodice C, Novelletto A, Malaspina P, et al. The trinucleotide repeat expansion on chromosome 6p (SCA1) in autosomal dominant cerebellar ataxias. Brain. 1994;117(Pt 4):645–9.PubMedGoogle Scholar
  104. 104.
    Sasaki H, Fukazawa T, Yanagihara T, Hamada T, Shima K, Matsumoto A, et al. Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol Scand. 1996;93(1):64–71.PubMedGoogle Scholar
  105. 105.
    Storey E, Forrest SM, Shaw JH, Mitchell P, Gardner RJ. Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol. 1999;56(1):43–50.PubMedGoogle Scholar
  106. 106.
    Wadia NH. A variety of olivopontocerebellar atrophy distinguished by slow eye movements and peripheral neuropathy. Adv Neurol. 1984;41:149–77.PubMedGoogle Scholar
  107. 107.
    Burk K, Stevanin G, Didierjean O, Cancel G, Trottier Y, Skalej M, et al. Clinical and genetic analysis of three German kindreds with autosomal dominant cerebellar ataxia type I linked to the SCA2 locus. J Neurol. 1997;244(4):256–61.PubMedGoogle Scholar
  108. 108.
    Le PF, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, et al. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201(1–2):53–7.Google Scholar
  109. 109.
    Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J. Cognitive deficits in Machado–Joseph disease. Ann Neurol. 1996;40(3):421–7.PubMedGoogle Scholar
  110. 110.
    Riess O, Rüb U, Pastore A, Bauer P, Schöls L. SCA3: neurological features, pathogenesis and animal models. Cerebellum. 2008;7(2):125–37.PubMedGoogle Scholar
  111. 111.
    Coutinho P, Andrade C. Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology. 1978;28(7):703–9.PubMedGoogle Scholar
  112. 112.
    Fowler HL. Machado–Joseph–Azorean disease. A ten-year study. Arch Neurol. 1984;41(9):921–5.PubMedGoogle Scholar
  113. 113.
    Sequeiros J, Coutinho P. Epidemiology and clinical aspects of Machado–Joseph disease. Adv Neurol. 1993;61:139–53.PubMedGoogle Scholar
  114. 114.
    Globas C, Bosch S, Zuhlke C, Daum I, Dichgans J, Burk K. The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol. 2003;250(12):1482–7.PubMedGoogle Scholar
  115. 115.
    Stevanin G, Durr A, Benammar N, Brice A. Spinocerebellar ataxia with mental retardation (SCA13). Cerebellum. 2005;4(1):43–6.PubMedGoogle Scholar
  116. 116.
    Tsuji S, Onodera O, Goto J, Nishizawa M. Sporadic ataxias in Japan: population-based epidemiological study. Cerebellum. 2008;7(2):189–97.PubMedGoogle Scholar
  117. 117.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedGoogle Scholar
  118. 118.
    Andreasen NC, Oleary DS, Arndt S, Cizadlo T, Hurtig R, Rezai K, et al. Short-term and long-term verbal memory—a positron emission tomography study. Proc Natl Acad Sci U S A. 1995;92(11):5111–5.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Andreasen NC, Oleary DS, Arndt S, Cizadlo T, Rezai K, Watkins GL, et al. PET studies of memory: novel and practiced free recall of complex narratives.1. Neuroimage. 1995;2(4):284–95.PubMedGoogle Scholar
  120. 120.
    Andreasen NC, Oleary DS, Cizadlo T, Arndt S, Rezai K, Watkins GL, et al. PET studies of memory: novel versus practiced free recall of word lists.2. Neuroimage. 1995;2(4):296–305.PubMedGoogle Scholar
  121. 121.
    Andreasen NC, Oleary DS, Cizadlo T, Arndt S, Rezai K, Watkins L, et al. Remembering the past—2 facets of episodic memory explored with positron emission tomography. Am J Psychiatry. 1995;152(11):1576–85.PubMedGoogle Scholar
  122. 122.
    Andreasen NC, O'Leary DS, Paradiso S, Cizadlo T, Arndt S, Watkins GL, et al. The cerebellum plays a role in conscious episodic memory retrieval. Hum Brain Mapp. 1999;8(4):226–34.PubMedGoogle Scholar
  123. 123.
    Andreasen NC, Calarge CA, O'Leary DS. Theory of mind and schizophrenia: a positron emission tomography study of medication-free patients. Schizophr Bull. 2008;34(4):708–19.PubMedGoogle Scholar
  124. 124.
    Andreasen NC, Paradiso S, O'Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical subcortical-cerebellar circuitry? Schizophr Bull. 1998;24(2):203–18.PubMedGoogle Scholar
  125. 125.
    Wassink TH, Andreasen NC, Nopoulos P, Flaum M. Cerebellar morphology as a predictor of symptom and psychosocial outcome in schizophrenia. Biol Psychiatry. 1999;45(1):41–8.PubMedGoogle Scholar
  126. 126.
    Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cerebellar vermis morphology in patients with schizophrenia: Evidence in support of the cognitive dysmetria concept. Biol Psychiatry. 1999;46(5):703–11.PubMedGoogle Scholar
  127. 127.
    Andreasen NC, Cohen G, Harris G, Cizadlo T, Parkkinen J, Rezai K, et al. Image-processing for the study of brain structure and function—problems and programs. J Neuropsychiatry Clin Neurosci. 1992;4(2):125–33.PubMedGoogle Scholar
  128. 128.
    Andreasen NC, Oleary DS, Flaum M, Nopoulos P, Watkins GL, Ponto LLB, et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet. 1997;349(9067):1730–4.PubMedGoogle Scholar
  129. 129.
    Andreasen NC. Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science. 1997;275(5306):1586–93.PubMedGoogle Scholar
  130. 130.
    Nopoulos P, Torres I, Flaum M, Andreasen NC, Ehrhardt JC, Yuh WTC. Brain morphology in first-episode schizophrenia. Am J Psychiatry. 1995;152(12):1721–3.PubMedGoogle Scholar
  131. 131.
    Nopoulos PC, Flaum M, Andreasen NC, Swayze VW. Gray-matter heterotopias in schizophrenia. Psychiatry Res-Neuroimaging. 1995;61(1):11–4.Google Scholar
  132. 132.
    Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Ponto LLB, Hichwa RD. Dysfunctional cortico-cerebellar circuits cause ‘cognitive dysmetria’ in schizophrenia. Neuroreport. 1998;9(8):1895–9.PubMedGoogle Scholar
  133. 133.
    Crespo-Facorro B, Kim JJ, Andreasen NC, O'Leary DS, Wiser AK, Bailey JM, et al. Human frontal cortex: an MRI-based parcellation method. Neuroimage. 1999;10(5):500–19.PubMedGoogle Scholar
  134. 134.
    Crespo-Facorro B, Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, et al. Neural basis of novel and well-learned recognition memory in schizophrenia: a positron emission tomography study. Hum Brain Mapp. 2001;12(4):219–31.PubMedGoogle Scholar
  135. 135.
    Crespo-Facorro B, Paradiso S, Andreasen NC, O'Leary DS, Watkins GL, Ponto LL, et al. Neural mechanisms of anhedonia in schizophrenia: a PET study of response to unpleasant and pleasant odors. JAMA. 2001;286(4):427–35.PubMedGoogle Scholar
  136. 136.
    Miller DD, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD. Comparison of the effects of risperidone and haloperidol on regional cerebral blood flow in schizophrenia. Biol Psychiatry. 2001;49(8):704–15.PubMedGoogle Scholar
  137. 137.
    Magnotta VA, Adix ML, Caprahan A, Lim K, Gollub R, Andreasen NC. Investigating connectivity between the cerebellum and thalamus in schizophrenia using diffusion tensor tractography: a pilot study. Psychiatry Res. 2008;163(3):193–200.PubMedGoogle Scholar
  138. 138.
    Baddeley A. Working memory. Science. 1992;255(5044):556–9.PubMedGoogle Scholar
  139. 139.
    Baddeley A, Gathercole S, Papagno C. The phonological loop as a language learning device. Psychol Rev. 1998;105(1):158–73.PubMedGoogle Scholar
  140. 140.
    Aboitiz F, Garcia RR, Bosman C, Brunetti E. Cortical memory mechanisms and language origins. Brain Lang. 2006;98(1):40–56.PubMedGoogle Scholar
  141. 141.
    Gathercole SE, Baddeley AD. Evaluation of the role of phonological STM in the development of vocabulary in children: a longitudinal study. J Mem Lang. 1989;28(2):200–13.Google Scholar
  142. 142.
    Gathercole SE, Baddeley AD. Phonological memory deficits in language disordered children: is there a causal connection? J Mem Lang. 1990;29(3):336–60.Google Scholar
  143. 143.
    Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(4):255–74.PubMedGoogle Scholar
  144. 144.
    Durisko C, Fiez JA. Functional activation in the cerebellum during working memory and simple speech tasks. Cortex. 2010;46(7):896–906.PubMedCentralPubMedGoogle Scholar
  145. 145.
    Chen SH, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.PubMedGoogle Scholar
  146. 146.
    Chang C, Crottaz-Herbette S, Menon V. Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage. 2007;34(3):1253–69.PubMedGoogle Scholar
  147. 147.
    Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.PubMedGoogle Scholar
  148. 148.
    Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85.PubMedGoogle Scholar
  149. 149.
    Marvel CL, Desmond JE. From storage to manipulation: how the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Lang. 2012;120(1):42–51.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Hulsmann E, Erb M, Grodd W. From will to action: sequential cerebellar contributions to voluntary movement. Neuroimage. 2003;20(3):1485–92.PubMedGoogle Scholar
  151. 151.
    Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24(2):332–8.PubMedGoogle Scholar
  153. 153.
    Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(Pt 2):306–20.PubMedGoogle Scholar
  154. 154.
    Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6(3):202–13.PubMedGoogle Scholar
  155. 155.
    Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22.PubMedGoogle Scholar
  156. 156.
    Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV. Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage. 2003;19(4):1510–20.PubMedGoogle Scholar
  157. 157.
    Marvel CL, Faulkner ML, Strain EC, Mintzer MZ, Desmond JE. An fMRI investigation of cerebellar function during verbal working memory in methadone maintenance patients. Cerebellum. 2012;11(1):300–10.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Silverman DH, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L, et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat. 2007;103(3):303–11.PubMedGoogle Scholar
  159. 159.
    Sweet LH, Rao SM, Primeau M, Mayer AR, Cohen RA. Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging. 2004;14(2):150–7.PubMedGoogle Scholar
  160. 160.
    Valera EM, Faraone SV, Biederman J, Poldrack RA, Seidman LJ. Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(5):439–47.PubMedGoogle Scholar
  161. 161.
    Beneventi H, Tonnessen FE, Ersland L, Hugdahl K. Working memory deficit in dyslexia: behavioral and FMRI evidence. Int J Neurosci. 2010;120(1):51–9.PubMedGoogle Scholar
  162. 162.
    Koch K, Wagner G, Schachtzabel C, Schultz C, Sauer H, Schlosser RG. Association between learning capabilities and practice-related activation changes in schizophrenia. Schizophr Bull. 2010;36(3):486–95.PubMedGoogle Scholar
  163. 163.
    White T, Schmidt M, Kim DI, Calhoun VD. Disrupted functional brain connectivity during verbal working memory in children and adolescents with schizophrenia. Cereb Cortex. 2011;21(3):510–8.PubMedGoogle Scholar
  164. 164.
    Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.PubMedGoogle Scholar
  165. 165.
    Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103(5):998–1008.PubMedGoogle Scholar
  166. 166.
    Imamizu H, Higuchi S, Toda A, Kawato M. Reorganization of brain activity for multiple internal models after short but intensive training. Cortex. 2007;43(3):338–49.PubMedGoogle Scholar
  167. 167.
    Goldman-Rakic PS. Working memory and the mind. Sci Am. 1992;267(3):110–7.PubMedGoogle Scholar
  168. 168.
    Miyake A. Models of working memory: mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press; 1999.Google Scholar
  169. 169.
    Fragaszy DM, Cummins-Sebree SE. Relational spatial reasoning by a nonhuman: the example of capuchin monkeys. Behav Cogn Neurosci Rev. 2005;4(4):282–306.PubMedGoogle Scholar
  170. 170.
    Obayashi S, Matsumoto R, Suhara T, Nagai Y, Iriki A, Maeda J. Functional organization of monkey brain for abstract operation. Cortex. 2007;43(3):389–96.PubMedGoogle Scholar
  171. 171.
    Vandervert L. The evolution of language: the cerebro-cerebellar blending of visual–spatial working memory with vocalizations. J Mind Behav. 2011;32(4):317.Google Scholar
  172. 172.
    Vandervert LR. The evolution of Mandler's conceptual primitives (image-schemas) as neural mechanisms for space–time simulation structures. New Ideas Psychol. 1997;15(2):105–23.Google Scholar
  173. 173.
    Vandervert L. How working memory and cognitive modeling functions of the cerebellum contribute to discoveries in mathematics. New Ideas Psychol. 2003;21(2):159–75.Google Scholar
  174. 174.
    Vandervert LR. The appearance of the child prodigy 10,000 years ago: an evolutionary and developmental explanation. J Mind Behav. 2009;30(1):15.Google Scholar
  175. 175.
    Vandervert LR, Schimpf PH, Liu H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creat Res J. 2007;19(1):1–18.Google Scholar
  176. 176.
    Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.PubMedGoogle Scholar
  177. 177.
    Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci. 1999;19(20):RC34.PubMedGoogle Scholar
  178. 178.
    Nakano E. Composition and decomposition learning of reaching movements under altered environments: an examination of the multiplicity of internal models. Syst Comput Japan. 2002;33(11):80.Google Scholar
  179. 179.
    Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci U S A. 2003;100(9):5461–6.PubMedCentralPubMedGoogle Scholar
  180. 180.
    Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403(6766):192–5.PubMedGoogle Scholar
  181. 181.
    Chomsky N. Cartesian linguistics: a chapter in the history of rationalist thought. New York: Harper & Row; 1966.Google Scholar
  182. 182.
    Baddeley AD, Andrade J. Working memory and the vividness of imagery. J Exp Psychol Gen. 2000;129(1):126–45.PubMedGoogle Scholar
  183. 183.
    Tooby J, DeVore I. The reconstruction of hominid behavioral evolution through strategic modeling. In: Kinzey WG, editor. The evolution of human behavior: primate models. Albany, NY: State University of New York Press; 1987. p. 183–237.Google Scholar
  184. 184.
    Pinker S. Colloquium paper: the cognitive niche: coevolution of intelligence, sociality, and language. Proc Natl Acad Sci U S A. 2010;107 Suppl 2:8993–9.PubMedCentralPubMedGoogle Scholar
  185. 185.
    Hockett CF. The origin of speech. San Francisco, CA: W.H. Freeman and Co; 1960.Google Scholar
  186. 186.
    Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.PubMedGoogle Scholar
  187. 187.
    Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12(7–8):961–74.PubMedGoogle Scholar
  188. 188.
    Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5(2):95–110.PubMedGoogle Scholar
  189. 189.
    Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey M. Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Frontiers in Psychology 2013;(in press).Google Scholar
  190. 190.
    Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci. 2000;4(11):423–31.PubMedGoogle Scholar
  191. 191.
    Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedGoogle Scholar
  192. 192.
    D'Angelo E. The cerebellar network: revisiting the critical issues. J Physiol. 2011;589(Pt 14):3421–2.PubMedGoogle Scholar
  193. 193.
    Frens MA, Donchin O. Forward models and state estimation in compensatory eye movements. Front Cell Neurosci. 2009;3:13.PubMedCentralPubMedGoogle Scholar
  194. 194.
    Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9(6):718–27.PubMedGoogle Scholar
  195. 195.
    Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9(8):1265–79.PubMedGoogle Scholar
  196. 196.
    Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185(3):359–81.PubMedCentralPubMedGoogle Scholar
  197. 197.
    Pezzulo G. Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind Lang. 2011;26(1):78–114.Google Scholar
  198. 198.
    Pezzulo G, Castelfranchi C. Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychol Res. 2009;73(4):559–77.PubMedGoogle Scholar
  199. 199.
    Pezzulo G, Castelfranchi C. The symbol detachment problem. Cogn Process. 2007;8(2):115–31.PubMedGoogle Scholar
  200. 200.
    Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6(6):242–7.PubMedGoogle Scholar
  201. 201.
    Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103–9.PubMedGoogle Scholar
  202. 202.
    Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27(3):377–96.PubMedGoogle Scholar
  203. 203.
    Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127–38.PubMedGoogle Scholar
  204. 204.
    Schubotz RI. Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci. 2007;11(5):211–8.PubMedGoogle Scholar
  205. 205.
    Imamizu H, Kawato M. Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. 2010;22:1–11.Google Scholar
  206. 206.
    Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci. 2003;358(1431):593–602.PubMedGoogle Scholar
  207. 207.
    Pezzulo G, Dindo H. What should I do next? Using shared representations to solve interaction problems. Exp Brain Res. 2011;211(3–4):613–30.PubMedGoogle Scholar
  208. 208.
    Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.PubMedGoogle Scholar
  209. 209.
    Pezzulo G. An active inference view of cognitive control. Front Psychol. 2012;3:478.PubMedCentralPubMedGoogle Scholar
  210. 210.
    Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59:617–45.PubMedGoogle Scholar
  211. 211.
    Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol. 2011;2:5.PubMedCentralPubMedGoogle Scholar
  212. 212.
    Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Front Psychol. 2012;3:612.PubMedCentralPubMedGoogle Scholar
  213. 213.
    Moulton ST, Kosslyn SM. Imagining predictions: mental imagery as mental emulation. Philos Trans R Soc Lond B Biol Sci. 2009;364(1521):1273–80.PubMedGoogle Scholar
  214. 214.
    Barkley RA. The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychol Rev. 2001;11(1):1–29.PubMedGoogle Scholar
  215. 215.
    Glenberg AM. What memory is for. Behav Brain Sci. 1997;20(1):1–19.PubMedGoogle Scholar
  216. 216.
    Rosenbaum DA, Carlson RA, Gilmore RO. Acquisition of intellectual and perceptual-motor skills. Annu Rev Psychol. 2001;52:453–70.PubMedGoogle Scholar
  217. 217.
    Piaget J. The construction of reality in the child. New York: Basic Books; 1954.Google Scholar
  218. 218.
    Pezzulo G, Barca L, Bocconi AL, Borghi AM. When affordances climb into your mind: advantages of motor simulation in a memory task performed by novice and expert rock climbers. Brain Cogn. 2010;73(1):68–73.PubMedGoogle Scholar
  219. 219.
    Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.PubMedGoogle Scholar
  220. 220.
    Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. In: Science-New York Then Washington. Washington, DC: American Association for the Advancement of Science;1995. p. 1880Google Scholar
  221. 221.
    Flanagan JR, Wing AM. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci. 1997;17(4):1519–28.PubMedGoogle Scholar
  222. 222.
    Mehta B, Schaal S. Forward models in visuomotor control. J Neurophysiol. 2002;88(2):942–53.PubMedGoogle Scholar
  223. 223.
    Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43(3):350–8.PubMedGoogle Scholar
  224. 224.
    Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24(5):1173–81.PubMedGoogle Scholar
  225. 225.
    Imamizu H, Kawato M. Neural correlates of predictive and postdictive switching mechanisms for internal models. J Neurosci. 2008;28(42):10751.PubMedGoogle Scholar
  226. 226.
    Iriki A. The neural origins and implications of imitation, mirror neurons and tool use. Curr Opin Neurobiol. 2006;16(6):660–7.PubMedGoogle Scholar
  227. 227.
    Johnson-Frey SH. The neural bases of complex tool use in humans. Trends Cogn Sci. 2004;8(2):71–8.PubMedGoogle Scholar
  228. 228.
    Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.PubMedGoogle Scholar
  229. 229.
    Rosenblatt F. Principles of neurodynamics. Washington: Spartan Books; 1962.Google Scholar
  230. 230.
    Fujita M. Adaptive filter model of the cerebellum. Biol Cybern. 1982;45(3):195–206.PubMedGoogle Scholar
  231. 231.
    Dean P, Porrill J, Ekerot CF, Jorntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11(1):30–43.PubMedGoogle Scholar
  232. 232.
    Barlow JS. The cerebellum and adaptive control. Cambridge, UK: Cambridge University Press; 2002.Google Scholar
  233. 233.
    Zaknich A. Principles of adaptive filters and self-learning systems. 2005.
  234. 234.
    Hebb DO. The organization of behavior; a neuropsychological theory. New York: Wiley; 1949.Google Scholar
  235. 235.
    Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMedGoogle Scholar
  236. 236.
    Craik KJW. The nature of explanation. Cambridge: University Press; 1952.Google Scholar
  237. 237.
    Johnson-Laird PN. Mental models : towards a cognitive science of language, inference, and consciousness. Cambridge, Mass: Harvard University Press; 1983.Google Scholar
  238. 238.
    Piaget J. The psychology of intelligence. London: Routledge & Paul; 1950.Google Scholar
  239. 239.
    Ito M. The cerebellum: brain for an implicit self. Upper Saddle River, NJ: Ft Press; 2011.Google Scholar
  240. 240.
    McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag. 2006;27(4):12.Google Scholar
  241. 241.
    Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain. 1996;119(Pt 4):1199–211.PubMedGoogle Scholar
  242. 242.
    Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum. 2012;11(2):505–25.PubMedGoogle Scholar
  243. 243.
    Penhune VB, Steele CJ. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res. 2012;226(2):579–91.PubMedGoogle Scholar
  244. 244.
    Jirenhed DA, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci. 2007;27(10):2493–502.PubMedGoogle Scholar
  245. 245.
    Hirata Y, Lockard JM, Highstein SM. Capacity of vertical VOR adaptation in squirrel monkey. J Neurophysiol. 2002;88(6):3194–207.PubMedGoogle Scholar
  246. 246.
    Kramer PD, Shelhamer M, Zee DS. Short-term adaptation of the phase of the vestibulo-ocular reflex (VOR) in normal human subjects. Exp Brain Res. 1995;106(2):318–26.PubMedGoogle Scholar
  247. 247.
    Gluck MA, Reifsnider ES, Thompson RF. Adaptive signal processing and the cerebellum: models of classical conditioning and VOR adaptation. In: Gluck MA, Rumelhart DE, editors. Neuroscience and connectionist theory. Hillsdale, NJ: Lawrence Erlbaum; 1990. p. 131–86.Google Scholar
  248. 248.
    Mauk MD, Donegan NH. A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn Mem. 1997;4(1):130–58.PubMedGoogle Scholar
  249. 249.
    Yamazaki T, Nagao S. A computational mechanism for unified gain and timing control in the cerebellum. PLoS One. 2012;7(3):e33319.PubMedCentralPubMedGoogle Scholar
  250. 250.
    Smaers JB, Steele J, Zilles K. Modeling the evolution of cortico cerebellar systems in primates. Ann NY Acad Sci. 2011;1225(1):176–90.PubMedGoogle Scholar
  251. 251.
    Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 157–86.Google Scholar
  252. 252.
    Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex. 2011;21:1761–70.Google Scholar
  253. 253.
    Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Physiol. 2005;35(8):773–9.PubMedGoogle Scholar
  254. 254.
    Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64(2):81–8.PubMedCentralPubMedGoogle Scholar
  255. 255.
    Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry. 2003;160(2):262–73.PubMedGoogle Scholar
  256. 256.
    Hopyan T, Laughlin S, Dennis M. Emotions and their cognitive control in children with cerebellar tumors. J Int Neuropsychol Soc. 2010;16(6):1027–38.PubMedGoogle Scholar
  257. 257.
    Wadsworth HM, Kana RK. Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia. 2011;49:1863–9.Google Scholar
  258. 258.
    Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, et al. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009;5(5):e1000381.PubMedCentralPubMedGoogle Scholar
  259. 259.
    Poldrack RA, Mumford JA, Schonberg T, Kalar D, Barman B, Yarkoni T. Discovering relations between mind, brain, and mental disorders using topic mapping. PLoS Comput Biol. 2012;8(10):e1002707.PubMedCentralPubMedGoogle Scholar
  260. 260.
    Dobromyslin VI, Salat DH, Fortier CB, Leritz EC, Beckmann CF, Milberg WP, et al. Distinct functional networks within the cerebellum and their relation to cortical systems assessed with independent component analysis. Neuroimage. 2012;60(4):2073–85.PubMedCentralPubMedGoogle Scholar
  261. 261.
    Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013;109(1):46–57.PubMedGoogle Scholar
  262. 262.
    Stoodley CJ, Valera EM, Schmahmann JD. An fMRI case study of functional topography in the human cerebellum. Behav Neurol. 2010;23:65–79.PubMedCentralPubMedGoogle Scholar
  263. 263.
    Schmahmann JD, Doyon J, Toga A, Petrides M, Evans A. MRI atlas of the human cerebellum. San Diego: Academic. 2000Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Leonard F. Koziol
    • 1
  • Deborah Budding
    • 1
    Email author
  • Nancy Andreasen
    • 1
  • Stefano D’Arrigo
    • 3
  • Sara Bulgheroni
    • 3
  • Hiroshi Imamizu
    • 5
    • 6
  • Masao Ito
    • 1
  • Mario Manto
    • 4
  • Cherie Marvel
    • 1
  • Krystal Parker
    • 1
  • Giovanni Pezzulo
    • 1
  • Narender Ramnani
    • 2
  • Daria Riva
    • 3
    Email author
  • Jeremy Schmahmann
    • 1
  • Larry Vandervert
    • 1
  • Tadashi Yamazaki
    • 7
  1. 1.ChicagoUSA
  2. 2.Royal Holloway, University of LondonEghamUK
  3. 3.Developmental Neurology DivisionFondazione IRCCS Istituto Neurologico C. BestaMilanoItaly
  4. 4.FNRS ULBBruxellesBelgium
  5. 5.Cognitive Mechanism LaboratoriesAdvanced Telecommunication Research Institute InternationalSoraku, KyotoJapan
  6. 6.Center for Information and Neural NetworksNational Institute of Information and Communications Technology and Osaka UniversitySuitaJapan
  7. 7.The University of Electro-CommunicationsTokyoJapan

Personalised recommendations