The Cerebellum

, Volume 12, Issue 6, pp 882–891 | Cite as

Socioeconomic Status and the Cerebellar Grey Matter Volume. Data from a Well-Characterised Population Sample

  • Jonathan CavanaghEmail author
  • Rajeev Krishnadas
  • G. David Batty
  • Harry Burns
  • Kevin A. Deans
  • Ian Ford
  • Alex McConnachie
  • Agnes McGinty
  • Jennifer S. McLean
  • Keith Millar
  • Naveed Sattar
  • Paul G. Shiels
  • Carol Tannahill
  • Yoga N. Velupillai
  • Chris J. Packard
  • John McLean


The cerebellum is highly sensitive to adverse environmental factors throughout the life span. Socioeconomic deprivation has been associated with greater inflammatory and cardiometabolic risk, and poor neurocognitive function. Given the increasing awareness of the association between early-life adversities on cerebellar structure, we aimed to explore the relationship between early life (ESES) and current socioeconomic status (CSES) and cerebellar volume. T1-weighted MRI was used to create models of cerebellar grey matter volumes in 42 adult neurologically healthy males selected from the Psychological, Social and Biological Determinants of Ill Health study. The relationship between potential risk factors, including ESES, CSES and cerebellar grey matter volumes were examined using multiple regression techniques. We also examined if greater multisystem physiological risk index—derived from inflammatory and cardiometabolic risk markers—mediated the relationship between socioeconomic status (SES) and cerebellar grey matter volume. Both ESES and CSES explained the greatest variance in cerebellar grey matter volume, with age and alcohol use as a covariate in the model. Low CSES explained additional significant variance to low ESES on grey matter decrease. The multisystem physiological risk index mediated the relationship between both early life and current SES and grey matter volume in cerebellum. In a randomly selected sample of neurologically healthy males, poorer socioeconomic status was associated with a smaller cerebellar volume. Early and current socioeconomic status and the multisystem physiological risk index also apparently influence cerebellar volume. These findings provide data on the relationship between socioeconomic deprivation and a brain region highly sensitive to environmental factors.


Cerebellum Socioeconomic status Deprivation Cognition 



We thank Dr Mortimer and Theresa Sackler Foundation for their support. This work was funded by the Glasgow Centre for Population Health, a partnership between NHS Greater Glasgow and Clyde, Glasgow City Council and the University of Glasgow, supported by the Scottish Government. The Glasgow Centre for Population Health had a role in study design, data collection and analysis, decision to publish and the preparation of the manuscript.


  1. 1.
    Giedd JN, Schmitt JE, Neale MC. Structural brain magnetic resonance imaging of pediatric twins. Hum Brain Mapp. 2007;28(6):474–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Gilmore JH, Schmitt JE, Knickmeyer RC, Smith JK, Lin W, Styner M, et al. Genetic and environmental contributions to neonatal brain structure: a twin study. Hum Brain Mapp. 2010;31(8):1174–82. PubMed PMID: 20063301. Pubmed Central PMCID: 3109622. Epub 2010/01/12. eng.PubMedGoogle Scholar
  3. 3.
    Garel C, Fallet-Bianco C, Guibaud L. The fetal cerebellum: development and common malformations. J Child Neurol. 2011;26(12):1483–92. PubMed PMID: 21954430. Epub 2011/09/29. eng.PubMedCrossRefGoogle Scholar
  4. 4.
    Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614S–20S. PubMed PMID: 17284765. Epub 2007/02/08. eng.PubMedGoogle Scholar
  5. 5.
    Jaatinen P, Rintala J. Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum. Cerebellum. 2008;7(3):332–47. PubMed PMID: 18418667. Epub 2008/04/18. eng.PubMedCrossRefGoogle Scholar
  6. 6.
    Manto M. Toxic agents causing cereballar ataxia. In: Durr A, Subramony S, editors. Handbook of clinical neurology. New York: Elsevier; 2011. p. 201–13.Google Scholar
  7. 7.
    Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56. PubMed PMID: 10836557. Epub 2000/06/03. eng.PubMedCrossRefGoogle Scholar
  8. 8.
    Rapoport M, van Reekum R, Mayberg H. The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci. 2000;12(2):193–8. PubMed PMID: 11001597. Epub 2000/09/23. eng.PubMedCrossRefGoogle Scholar
  9. 9.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32(1):413–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Hackman DA, Farah MJ, Meaney MJ. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci. 2010;11(9):651–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Pollitt RA, Kaufman JS, Rose KM, Diez-Roux AV, Zeng D, Heiss G. Cumulative life course and adult socioeconomic status and markers of inflammation in adulthood. J Epidemiol Community Health. 2008;62(6):484–91. PubMed PMID: 18477746. Epub 2008/05/15. eng.PubMedCrossRefGoogle Scholar
  12. 12.
    Pollitt RA, Kaufman JS, Rose KM, Diez-Roux AV, Zeng D, Heiss G. Early-life and adult socioeconomic status and inflammatory risk markers in adulthood. Eur J Epidemiol. 2007;22(1):55–66. PubMed PMID: 17225957. Epub 2007/01/18. eng.PubMedCrossRefGoogle Scholar
  13. 13.
    Pollitt RA, Rose KM, Kaufman JS. Evaluating the evidence for models of life course socioeconomic factors and cardiovascular outcomes: a systematic review. BMC Publ Health. 2005;5:7. PubMed PMID: 15661071. Pubmed Central PMCID: 548689. Epub 2005/01/22. eng.CrossRefGoogle Scholar
  14. 14.
    Gimeno D, Marmot MG, Singh-Manoux A. Inflammatory markers and cognitive function in middle-aged adults: the Whitehall II study. Psychoneuroendocrinology. 2008;33(10):1322–34. PubMed PMID: 18774232. Pubmed Central PMCID: 2613425. Epub 2008/09/09. eng.PubMedCrossRefGoogle Scholar
  15. 15.
    Cournot M, Marquie JC, Ansiau D, Martinaud C, Fonds H, Ferrieres J, et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology. 2006;67(7):1208–14. PubMed PMID: 17030754. Epub 2006/10/13. eng.PubMedCrossRefGoogle Scholar
  16. 16.
    Gruenewald TL, Karlamangla AS, Hu P, Stein-Merkin S, Crandall C, Koretz B, et al. History of socioeconomic disadvantage and allostatic load in later life. Soc Sci Med. 2012;74(1):75–83. PubMed PMID: 22115943, Pubmed Central PMCID: 3264490. Epub 2011/11/26. eng.PubMedCrossRefGoogle Scholar
  17. 17.
    Mirescu C, Peters JD, Gould E. Early life experience alters response of adult neurogenesis to stress. Nat Neurosci. 2004;7(8):841–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Bauer PM, Hanson JL, Pierson RK, Davidson RJ, Pollak SD. Cerebellar volume and cognitive functioning in children who experienced early deprivation. Biol Psychiatry. 2009;66(12):1100–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Velupillai YN, Packard CJ, Batty GD, Bezlyak V, Burns H, Cavanagh J, et al. Psychological, social and biological determinants of ill health (pSoBid): study protocol of a population-based study. BMC Publ Health. 2008;8:126. PubMed PMID: 18426568. Pubmed Central PMCID: 2386810. Epub 2008/04/23. eng.CrossRefGoogle Scholar
  20. 20.
    Deans KA, Bezlyak V, Ford I, Batty GD, Burns H, Cavanagh J, et al. Differences in atherosclerosis according to area level socioeconomic deprivation: cross sectional, population based study. BMJ. 2009;339:b4170. PubMed PMID: 19861369. Pubmed Central PMCID: 2768777. Epub 2009/10/29. eng.PubMedCrossRefGoogle Scholar
  21. 21.
    Shiels PG, McGlynn LM, Macintyre A, Johnson PC, Batty GD, Burns H, et al. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS One. 2011;6(7):e22521. PubMed PMID: 21818333. Pubmed Central PMCID: 3144896. Epub 2011/08/06. eng.PubMedCrossRefGoogle Scholar
  22. 22.
    Packard CJ, Bezlyak V, McLean JS, Batty GD, Ford I, Burns H, et al. Early life socioeconomic adversity is associated in adult life with chronic inflammation, carotid atherosclerosis, poorer lung function and decreased cognitive performance: a cross-sectional, population-based study. BMC Public Health. 2011. doi: 10.1186/1471-2458-11-42.PubMedGoogle Scholar
  23. 23.
    Greenacre MJ. Theory and application of correspondence analysis. London: Academic; 1984.Google Scholar
  24. 24.
    Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000;57(10):925–35. PubMed PMID: 11015810. Epub 2000/10/04. eng.PubMedCrossRefGoogle Scholar
  25. 25.
    Trenerry M, Crosson B, DeBoe J, Leber W. Stroop Neuropsychological Screening Test. Odessa: Psychological Assessment Resources; 1989.Google Scholar
  26. 26.
    Reitan R, Wolfson D. Category test and trail making test as measures of frontal lobe functions. Clin Neuropsychol. 1995;9:50–6.CrossRefGoogle Scholar
  27. 27.
    Deary IJ, Johnson W, Starr JM. Are processing speed tasks biomarkers of cognitive aging? Psychol Aging. 2010;25(1):219–28. PubMed PMID: 20230141. Epub 2010/03/17. eng.PubMedCrossRefGoogle Scholar
  28. 28.
    Spreen O, Strauss E. A compendium of neuropsychological tests: administration, norms, and commentary. 2nd ed. Oxford: Oxford University Press; 1998.Google Scholar
  29. 29.
    Crawford JR, Deary IJ, Starr J, Whalley LJ. The NART as an index of prior intellectual functioning: a retrospective validity study covering a 66-year interval. Psychol Med. 2001;31(3):451–8. PubMed PMID: 11305853. Epub 2001/04/18. eng.PubMedCrossRefGoogle Scholar
  30. 30.
    Goldberg DP, Gater R, Sartorius N, Ustun TB, Piccinelli M, Gureje O, et al. The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychol Med. 1997;27(1):191–7. PubMed PMID: 9122299. Epub 1997/01/01. eng.PubMedCrossRefGoogle Scholar
  31. 31.
    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55. PubMed PMID: 11832223.PubMedCrossRefGoogle Scholar
  32. 32.
    Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14(1):11–22. PubMed PMID: 14654453.PubMedCrossRefGoogle Scholar
  33. 33.
    Gromping U. Relative importance for linear regression in R: the package relaimpo. J Stat Soft. 2007;17(1):1–27.Google Scholar
  34. 34.
    Lindeman RH, Merenda PF, Gold RZ. Introduction to bivariate and multivariate analysis. Glenview, Ill. London: Scott; 1980.Google Scholar
  35. 35.
    Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods. 2008;40(3):879–91. PubMed PMID: 18697684. Epub 2008/08/14. eng.PubMedCrossRefGoogle Scholar
  36. 36.
    Chittleborough CR, Baum FE, Taylor AW, Hiller JE. A life-course approach to measuring socioeconomic position in population health surveillance systems. J Epidemiol Community Health. 2006;60(11):981–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Verbitskaya L. Some aspects of the onto-phylogenesis of the cerebellum. In: Llinas R, editor. Neurobiology of cerebellum evolution and development. Chicago: AMA; 1969. p. 859–79.Google Scholar
  38. 38.
    Pintado C, Gavilan MP, Gavilan E, Garcia-Cuervo L, Gutierrez A, Vitorica J, et al. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation. 2012;9(1):87. PubMed PMID: 22559833. Pubmed Central PMCID: 3462674.PubMedCrossRefGoogle Scholar
  39. 39.
    Das S, Basu A. Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res. 2008;86(6):1199–208. PubMed PMID: 18058947.PubMedCrossRefGoogle Scholar
  40. 40.
    Krishnadas R, Cavanagh J. Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry. 2012;83(5):495–502. PubMed PMID: 22423117.PubMedCrossRefGoogle Scholar
  41. 41.
    Herzog RI, Chan O, Yu S, Dziura J, McNay EC, Sherwin RS. Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology. 2008;149(4):1499–504. PubMed PMID: 18187548. Pubmed Central PMCID: 2276713. Epub 2008/01/12. eng.PubMedCrossRefGoogle Scholar
  42. 42.
    Hoogendam YY, van der Geest JN, van der Lijn F, van der Lugt A, Niessen WJ, Krestin GP, et al. Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging. 2012;33(12):2774–81. PubMed PMID: 22405042. Epub 2012/03/13. eng.PubMedCrossRefGoogle Scholar
  43. 43.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13. PubMed PMID: 18319727. Epub 2008/03/06. eng.PubMedCrossRefGoogle Scholar
  44. 44.
    Taber KH, Strick PL, Hurley RA. Rabies and the cerebellum: new methods for tracing circuits in the brain. J Neuropsychiatry Clin Neurosci. 2005;17(2):133–9. PubMed PMID: 15939965. Epub 2005/06/09. eng.PubMedCrossRefGoogle Scholar
  45. 45.
    Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse. 2011;65(11):1204–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501. PubMed PMID: 18835452. Epub 2008/10/07. eng.PubMedCrossRefGoogle Scholar
  47. 47.
    MacLullich AM, Edmond CL, Ferguson KJ, Wardlaw JM, Starr JM, Seckl JR, et al. Size of the neocerebellar vermis is associated with cognition in healthy elderly men. Brain Cogn. 2004;56(3):344–8. PubMed PMID: 15522773. Epub 2004/11/04. eng.PubMedCrossRefGoogle Scholar
  48. 48.
    Hogan MJ, Staff RT, Bunting BP, Murray AD, Ahearn TS, Deary IJ, et al. Cerebellar brain volume accounts for variance in cognitive performance in older adults. Cortex. 2011;47(4):441–50. PubMed PMID: 20167312. Epub 2010/02/20. eng.PubMedCrossRefGoogle Scholar
  49. 49.
    Xu J, Kobayashi S, Yamaguchi S, Iijima K, Okada K, Yamashita K. Gender effects on age-related changes in brain structure. AJNR Am J Neuroradiol. 2000;21(1):112–8. PubMed PMID: 10669234. Epub 2000/02/11. eng.PubMedGoogle Scholar
  50. 50.
    McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci. 2010;1186(1):190–222.PubMedCrossRefGoogle Scholar
  51. 51.
    Miller GA, Chapman JP. Misunderstanding analysis of covariance. J Abnorm Psychol. 2001;110(1):40–8. PubMed PMID: 11261398.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jonathan Cavanagh
    • 1
    • 13
    Email author
  • Rajeev Krishnadas
    • 1
  • G. David Batty
    • 3
    • 4
  • Harry Burns
    • 5
  • Kevin A. Deans
    • 7
    • 8
  • Ian Ford
    • 2
  • Alex McConnachie
    • 2
  • Agnes McGinty
    • 9
  • Jennifer S. McLean
    • 10
  • Keith Millar
    • 1
  • Naveed Sattar
    • 11
  • Paul G. Shiels
    • 6
  • Carol Tannahill
    • 10
  • Yoga N. Velupillai
    • 12
  • Chris J. Packard
    • 9
  • John McLean
    • 1
  1. 1.Sackler Institute of Psychobiological Research, Institute of Health and WellbeingUniversity of GlasgowGlasgowUK
  2. 2.Robertson Centre for BiostatisticsUniversity of GlasgowGlasgowUK
  3. 3.Social and Public Health Sciences UnitMedical Research CouncilGlasgowUK
  4. 4.Clinical Epidemiology Group, Department of Epidemiology and Public HealthUniversity College LondonLondonUK
  5. 5.Scottish GovernmentEdinburghUK
  6. 6.Institute of Cancer Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
  7. 7.Department of Clinical Biochemistry, NHS Greater Glasgow and ClydeGlasgow Royal InfirmaryGlasgowUK
  8. 8.Department of Clinical BiochemistryAberdeen Royal InfirmaryAberdeenUK
  9. 9.Glasgow Clinical Research FacilityGlasgowUK
  10. 10.Glasgow Centre for Population HealthGlasgowUK
  11. 11.Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
  12. 12.Graduate Entry Medical SchoolUniversity of LimerickLimerickIreland
  13. 13.Institute of Mental Health and Wellbeing, College of Medical, Veterinary and Life Sciences, Administration BuildingGartnavel Royal HospitalGlasgowUK

Personalised recommendations