The Cerebellum

, Volume 12, Issue 4, pp 557–567 | Cite as

Saccades and Eye–Head Coordination in Ataxia with Oculomotor Apraxia Type 2

  • Muriel PanouillèresEmail author
  • Solène Frismand
  • Olivier Sillan
  • Christian Urquizar
  • Alain Vighetto
  • Denis Pélisson
  • Caroline Tilikete
Original Paper


Ataxia with oculomotor apraxia type 2 (AOA2) is one of the most frequent autosomal recessive cerebellar ataxias. Oculomotor apraxia refers to horizontal gaze failure due to deficits in voluntary/reactive eye movements. These deficits can manifest as increased latency and/or hypometria of saccades with a staircase pattern and are frequently associated with compensatory head thrust movements. Oculomotor disturbances associated with AOA2 have been poorly studied mainly because the diagnosis of oculomotor apraxia was based on the presence of compensatory head thrusts. The aim of this study was to characterise the nature of horizontal gaze failure in patients with AOA2 and to demonstrate oculomotor apraxia even in the absence of head thrusts. Five patients with AOA2, without head thrusts, were tested in saccadic tasks with the head restrained or free to move and their performance was compared to a group of six healthy participants. The most salient deficit of the patients was saccadic hypometria with a typical staircase pattern. Saccade latency in the patients was longer than controls only for memory-guided saccades. In the head-free condition, head movements were delayed relative to the eye and their amplitude and velocity were strongly reduced compared to controls. Our study emphasises that in AOA2, hypometric saccades with a staircase pattern are a more reliable sign of oculomotor apraxia than head thrust movements. In addition, the variety of eye and head movements’ deficits suggests that, although the main neural degeneration in AOA2 affects the cerebellum, this disease affects other structures.


AOA2 Oculomotor apraxia Staircase saccade Eye–head coordination Cerebellum 



The authors thank the patients and the healthy subjects for contributing to this study. The authors thank Pr S. Thobois, Dr I. Roullet-Solignac and Dr A. Poisson for referring the patients. The authors are really grateful to Pr. D. Zee for a helpful discussion. This work was promoted by the Hospices Civils de Lyon (2002–303).

Conflict of interest

The authors declare that there is no conflict of interest

Supplementary material

12311_2013_463_MOESM1_ESM.doc (34 kb)
ESM 1 (DOC 34 kb)


  1. 1.
    Watanabe M, Sugai Y, Concannon P, Koenig M, Schmitt M, Sato M, et al. Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy, and elevated level of serum creatine kinase, gamma-globulin, and alpha-fetoprotein. Ann Neurol. 1998;44:265–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Bomont P, Watanabe M, Gershoni-Barush R, Shizuka M, Tanaka M, Sugano J, et al. Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33-34, and with hearing impairment and optic atrophy to 6p21-23. Eur J Hum Genet. 2000;8:986–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Nemeth AH, Bochukova E, Dunne E, Huson SM, Elston J, Hannan MA, et al. Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am J Hum Genet. 2000;67:1320–6.PubMedGoogle Scholar
  4. 4.
    Moreira MC, Klur S, Watanabe M, Nemeth AH, Le Ber I, Moniz JC, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet. 2004;36:225–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Anheim M, Fleury MC, Franques J, Moreira MC, Delaunoy JP, Stoppa-Lyonnet D, et al. Clinical and molecular findings of ataxia with oculomotor apraxia type 2 in 4 families. Arch Neurol. 2008;65:958–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132:2688–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Cogan DG. A type of congenital ocular motor apraxia presenting jerky head movements. Trans Am Acad Ophthalmol Otolaryngol. 1952;56:853–62.PubMedGoogle Scholar
  8. 8.
    Cogan DG. A type of congenital ocular motor apraxia presenting jerky head movements. Am J Ophthalmol. 1953;36:433–41.PubMedGoogle Scholar
  9. 9.
    Cogan DG, Adams RD. A type of paralysis of conjugate gaze (ocular motor apraxia). AMA Arch Ophthalmol. 1953;50:434–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Leigh RJ, Zee DS. The neurology of eye movements. New York: Oxford University Press; 2006.Google Scholar
  11. 11.
    Zee DS, Yee RD, Singer HS. Congenital ocular motor apraxia. Brain. 1977;100:581–99.PubMedCrossRefGoogle Scholar
  12. 12.
    Asaka T, Yokoji H, Ito J, Yamaguchi K, Matsushima A. Autosomal recessive ataxia with peripheral neuropathy and elevated AFP: novel mutations in SETX. Neurology. 2006;63:1581.Google Scholar
  13. 13.
    Criscuolo C, Chessa L, Di Giandomenico S, Mancini P, Sacca F, Grieco GS, et al. Ataxia with oculomotor apraxia type 2—a clinical, pathologic, and genetic study. Neurology. 2006;66:1207–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Gazulla J, Benavente I, Lopez-Fraile IP, Modrego P, Koenig M. Sensorimotor neuronopathy in ataxia with oculomotor apraxia type 2. Muscle Nerve. 2009;40:485.CrossRefGoogle Scholar
  15. 15.
    Le Ber I, Bouslam N, Rivaud-Pechoux S, Guimaraes J, Benomar A, Chamayou C, et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain. 2004;127:759–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Tazir M, Ali-Pacha L, M’Zahem A, Delaunoy JP, Fritsch M, Nouioua S, et al. Ataxia with oculomotor apraxia type 2: a clinical and genetic study of 19 patients. J Neurol Sci. 2009;278:77–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Le Ber I, Moreira MC, Rivaud-Pechoux S, Chamayou C, Ochsner F, Kuntzer T, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain. 2003;126:2761–72.PubMedCrossRefGoogle Scholar
  18. 18.
    R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012.Google Scholar
  19. 19.
    Hothorn T, Hornik K, van de Wiel MA, Zeilis A. A Lego system for conditional inference. Am Stat. 2006;60:257–63.CrossRefGoogle Scholar
  20. 20.
    Hothorn T, Hornik K, van de Wiel MA, Zeilis A. Implementing a class of permutation tests: the coin package. J Stat Soft. 2008;28(8):1–23.Google Scholar
  21. 21.
    Brunner E, Domhof S, Langer F. Nonparametric analysis of longitudinal data in factorial experiments. New York: Wiley; 2002.Google Scholar
  22. 22.
    Brunner E, Munzel U. The nonparametric Behrens–Fisher problem: asymptotic theory and a small sample approximation. Biomed J. 2000;42:17–25.Google Scholar
  23. 23.
    DeSouza JF, Menon RS, Everling S. Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI. J Neurophysiol. 2003;89:1016–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Guitton D, Buchtel HA, Douglas RM. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res. 1985;58:455–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Pierrot-Deseilligny C, Muri RM, Ploner CJ, Gaymard B, Demeret S, Rivaud-Pechoux S. Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain. 2003;126:1460–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Fielding J, Corben L, Cremer P, Millist L, White O, Delatycki M. Disruption to higher order processes in Friedreich ataxia. Neuropsychologia. 2010;48:235–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Hubner J, Sprenger A, Klein C, Hagenah J, Rambold H, Zuhlke C, et al. Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17). Neurology. 2007;69:1160–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Filippopoulos F, Eggert T, Straube A. Deficits of cortical oculomotor mechanisms in cerebellar atrophy patients. Exp Brain Res. 2013;224(4):541–50.CrossRefGoogle Scholar
  29. 29.
    Rivaud-Pechoux S, Durr A, Gaymard B, Cancel G, Ploner CJ, Agid Y, et al. Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol. 1998;43:297–302.PubMedCrossRefGoogle Scholar
  30. 30.
    Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain. 2007;130:10–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Solomon D, Ramat S, Leigh RJ, Zee D. A quick look at slow saccades after cardiac surgery: where is the lesion? In: Kennard C, Leigh RJ, editors. Using eye movements as an experimental probe of brain function—a symposium in honor of Jean Buttner-Ennever, vol. 171. Amsterdam: Elsevier; 2008. p. 587–90.CrossRefGoogle Scholar
  32. 32.
    Robinson DA. Eye movements evoked by collicular stimulation in the alert monkey. Vis Res. 1972;12:1795–808.PubMedCrossRefGoogle Scholar
  33. 33.
    Schiller PH, Stryker M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol. 1972;35:915–24.PubMedGoogle Scholar
  34. 34.
    Sauleau P, Pollak P, Krack P, Pelisson D, Vighetto A, Benabid AL. Contraversive eye deviation during stimulation of the subthalamic region. Mov Disord. 2007;22:1810–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Sauleau P, Pollak P, Krack P, Courjon JH, Vighetto A, Benabid AL, et al. Subthalamic stimulation improves orienting gaze movements in Parkinson’s disease. Clin Neurophysiol. 2008;119:1857–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Shaikh AG, Xu-Wilson M, Grill S, Zee DS. ‘Staircase’ square-wave jerks in early Parkinson’s disease. B J Ophthalmol. 2011;95:705–9.CrossRefGoogle Scholar
  37. 37.
    Pelisson D, Goffart L, Guillaume A. Contribution of the rostral fastigial nucleus to the control of orienting gaze shifts in the head-unrestrained cat. J Neurophysiol. 1998;80:1180–96.PubMedGoogle Scholar
  38. 38.
    White OB, Saint-Cyr JA, Tomlinson RD, Sharpe JA. Ocular motor deficits in Parkinson’s disease. III. Coordination of eye and head movements. Brain. 1988;111:115–29.PubMedCrossRefGoogle Scholar
  39. 39.
    Gandhi NJ, Katnani HA. Motor functions of the superior colliculus. Annu Rev Neurosci. 2011;34:205–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Muriel Panouillères
    • 1
    • 3
    • 4
    Email author
  • Solène Frismand
    • 2
  • Olivier Sillan
    • 1
    • 3
  • Christian Urquizar
    • 1
    • 3
  • Alain Vighetto
    • 1
    • 2
    • 3
  • Denis Pélisson
    • 1
    • 3
  • Caroline Tilikete
    • 1
    • 2
    • 3
  1. 1.INSERM U1028; CNRS UMR5292; Lyon Neuroscience Research Center, ImpAct TeamBronFrance
  2. 2.Unité de Neuro-ophtalmologie and Service de Neurologie D, Hôpital NeurologiqueHospices Civils de LyonBronFrance
  3. 3.University Lyon 1LyonFrance
  4. 4.INSERM U1028; CNRS UMR5292; Lyon Neuroscience Research Center, ImpAct TeamBron CedexFrance

Personalised recommendations