The Cerebellum

, Volume 12, Issue 4, pp 534–546 | Cite as

The Expression of HDAC1 and HDAC2 During Cerebellar Cortical Development

  • Ji Young Janice Yoo
  • Matt Larouche
  • Dan Goldowitz
Original Paper


Histone deacetylases (HDACs) are epigenetic regulatory proteins that repress gene transcription by changing DNA conformation. The regulation of gene expression through histone deacetylation is an important mechanism for the development of the central nervous system. Although the disruption of the balance in epigenetic gene regulation has been implicated in many CNS developmental abnormalities and diseases, the expression pattern of HDACs in various cell types in the brain during its maturation process has had limited exploration. Therefore, in this study, we investigate the cell type-specific and developmental stage-specific expression pattern of HDAC1 and HDAC2 in the mouse cerebellum. Our experimental results show that the cerebellar progenitors and glial cells express high levels of HDAC1 and low levels of HDAC2. On the other hand, the post-mitotic migrating neuronal cells of the cerebellar cortex show strong HDAC2 and weak HDAC1 expressions. In more differentiated neuronal cells, including Purkinje cells, granule cells, unipolar brush cells, and GABAergic interneurons, we found a consistent expression pattern, high levels of HDAC2 and low levels of HDAC1. Therefore, our data provide support for the potential important roles of HDAC1 in cell proliferation and HDAC2 in migration and differentiation.


Epigenetics Histone deacetylase 1 Histone deacetylase 2 Cerebellum development Neuro-glia differentiation 



We wish to acknowledge Drs. Doug Swanson and Thomas Ha for the acquisition of the Hdac1 and Hdac2 expression data in Cb GRiTS.

Conflict of Interest

The authors of this manuscript declare no conflicts of interest.


  1. 1.
    Sun JM, Spencer VA, Chen HY, Li L, Davie JR. Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation. Methods. 2003;31(1):12–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Gregoretti I, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338(1):17–31.PubMedCrossRefGoogle Scholar
  4. 4.
    de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(3):737–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 2008;9(3):206–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Namihira M, Kohyama J, Abematsu M, Nakashima K. Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Ser B Biol Sci. 2008;363(1500):2099–109.CrossRefGoogle Scholar
  7. 7.
    Brunmeir R, Lagger S, Seiser C. Histone deacetylase 1 and 2-controlled embryonic development and cell differentiation. Int J Dev Biol. 2009;53:275–89.PubMedCrossRefGoogle Scholar
  8. 8.
    Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 2002;21(11):2672–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007;21(14):1790–802.PubMedCrossRefGoogle Scholar
  10. 10.
    Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3[beta] activity. Nat Med. 2007;13(3):324–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Zimmermann S, Kiefer F, Prudenziati M, Spiller C, Hansen J, Floss T, et al. Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res. 2007;67(19):9047–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Guan JS, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459(7243):55–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 2010;24(5):455–69.PubMedCrossRefGoogle Scholar
  14. 14.
    Morris MJ, Karra AS, Monteggia LM. Histone deacetylases govern cellular mechanisms underlying behavioral and synaptic plasticity in the developing and adult brain. Behav Pharmacol. 2010;21(5–6):409–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov. 2008;7(10):854–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer A, Sananbenesi F, Mungenast A, Tsai LH. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci. 2010;31(12):605–17.PubMedCrossRefGoogle Scholar
  17. 17.
    Thomas E. Focal nature of neurological disorders necessitates isotype-selective histone deacetylase (HDAC) inhibitors. Mol Neurobiol. 2009;40(1):33–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Ehninger D, Li W, Fox K, Stryker MP, Silva AJ. Reversing neurodevelopmental disorders in adults. Neuron. 2008;60(6):950–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Genes Dev. 2004;101(47):16659–64.Google Scholar
  20. 20.
    Balasubramaniyan V, Boddeke E, Bakels R, Kust B, Kooistra S, Veneman A, et al. Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience. 2006;143(4):939–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Shaked M, Weissmuller K, Svoboda H, Hortschansky P, Nishino N, Wolfl S, et al. Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling. PLoS One. 2008;3(7):e2668.PubMedCrossRefGoogle Scholar
  22. 22.
    MacDonald JL, Roskams AJ. Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev Dyn. 2008;237(8):2256–67.PubMedCrossRefGoogle Scholar
  23. 23.
    Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. PNAS. 2009;106(19):7876–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun Z-W, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell. 2008;30(1):61–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Weeden D, Glenn R, Swanson D, Ha T, Hamre K, Berry M, et al. Cb GRiTS Database: Cerebellar gene regulation in time & space.Google Scholar
  26. 26.
    Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, et al. Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Mol Vis. 2009;15:1730–63.PubMedGoogle Scholar
  27. 27.
    Kurki P, Vanderlaan M, Dolbeare F, Gray J, Tan EM. Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res. 1986;166(1):209–19.PubMedCrossRefGoogle Scholar
  28. 28.
    Goldowitz D, Hamre K. The cells and molecules that make a cerebellum. Trends Neurosci. 1998;21(9):375–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Milosevic A, Goldman JE. Progenitors in the postnatal cerebellar white matter are antigenically heterogeneous. J Comp Neurol. 2002;452(2):192–203.PubMedCrossRefGoogle Scholar
  30. 30.
    Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 2003;467(1):1–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Gleeson JG, Lin PT, Flanagan LA, Walsh CA. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron. 1999;23(2):257–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Altman J, Bayer SA. Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol. 1978;179(1):23–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol. 1999;41(2):281–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Englund C, Kowalczyk T, Daza RAM, Dagan A, Lau C, Rose MF, et al. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci. 2006;26(36):9184–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Leto K, Bartolini A, Rossi F. Development of cerebellar GABAergic interneurons: origin and shaping of the “minibrain” local connections. Cerebellum. 2008;7(4):523–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Glassmann A, Topka S, Wang-Eckardt L, Anders S, Weisheit G, Endl E, et al. Basic molecular fingerprinting of immature cerebellar cortical inhibitory interneurons and their precursors. Neuroscience. 2009;159(1):69–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Yamada K, Watanabe M. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int. 2002;77(2):94–108.PubMedCrossRefGoogle Scholar
  38. 38.
    Futamura M, Monden Y, Okabe T, Fujita-Yoshigaki J, Yokoyama S, Nishimura S. Trichostatin A inhibits both ras-induced neurite outgrowth of PC12 cells and morphological transformation of NIH3T3 cells. Oncogene. 1995;10(6):1119–23.PubMedGoogle Scholar
  39. 39.
    Sano M, Kitajima S. Inhibition of the nerve growth factor-induced outgrowth of neurites by trichostatin A requires protein synthesis de novo in PC12D cells. Brain Res. 1996;742:195–202.PubMedCrossRefGoogle Scholar
  40. 40.
    Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, et al. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci. 2004;24(29):6590–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Laeng P, Pitts RL, Lemire AL, Drabik CE, Weiner A, Tang H, et al. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem. 2004;91(1):238–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276(39):36734–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Broide R, Redwine J, Aftahi N, Young W, Bloom F, Winrow C. Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci. 2007;31(1):47–58.PubMedCrossRefGoogle Scholar
  44. 44.
    Murko C, Lagger S, Steiner M, Seiser C, Schoefer C, Pusch O. Expression of class I histone deacetylases during chick and mouse development. Int J Dev Biol. 2010;54(10):1527.PubMedCrossRefGoogle Scholar
  45. 45.
    Baltan S, Bachleda A, Morrison R, Murphy S. Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia. Transl Stroke Res. 2011;2(3):411–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Senese S, Zaragoza K, Minardi S, Muradore I, Ronzoni S, Passafaro A, et al. Role for histone deacetylase 1 in human tumor cell proliferation. Mol Cell Biol. 2007;27(13):4784–95.PubMedCrossRefGoogle Scholar
  47. 47.
    Wilting RH, Yanover E, Heideman MR, Jacobs H, Horner J, van der Torre J, et al. Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J. 2010;29(15):2586–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, et al. Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci. 2009;29(25):8288–97.PubMedCrossRefGoogle Scholar
  49. 49.
    Lagger G, Doetzlhofer A, Schuettengruber B, Haidweger E, Simboeck E, Tischler J, et al. The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol. 2003;23(8):2669–79.PubMedCrossRefGoogle Scholar
  50. 50.
    Zupkovitz G, Tischler J, Posch M, Sadzak I, Ramsauer K, Egger G, et al. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol Cell Biol. 2006;26(21):7913–28.PubMedCrossRefGoogle Scholar
  51. 51.
    Canettieri G, Di Marcotullio L, Greco A, Coni S, Antonucci L, Infante P, et al. Histone deacetylase and Cullin3-RENKCTD11 ubiquitin ligase interplay regulates Hedgehog signaling through Gli acetylation. Nat Cell Biol. 2010;12(2):132–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell. 2003;4(1):13–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Sottile V, Li M, Scotting PJ. Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res. 2006;1099(1):8–17.PubMedCrossRefGoogle Scholar
  54. 54.
    Alcock J, Sottile V. Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex. Cell Res. 2009;19(12):1324–33.PubMedCrossRefGoogle Scholar
  55. 55.
    Siebzehnrubl F, Buslei R, Eyupoglu I, Seufert S, Hahnen E, Blumcke I. Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells. Exp Brain Res. 2007;176(4):672–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Dovey OM, Foster CT, Cowley SM. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. PNAS. 2010;107(18):8242–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature. 2008;455(7211):411–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee S, Lee S. Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol. 2010;20(1):29–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ji Young Janice Yoo
    • 1
  • Matt Larouche
    • 1
  • Dan Goldowitz
    • 1
  1. 1.Department of Medical Genetics, Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada

Personalised recommendations