Advertisement

The Cerebellum

, Volume 12, Issue 2, pp 224–235 | Cite as

Cerebellar Activation Related to Saccadic Inaccuracies

  • Esmee I. M. L. Liem
  • Maarten A. Frens
  • Marion Smits
  • Jos N. van der GeestEmail author
Original Paper

Abstract

Using functional MRI, we assessed activity in the human cerebellum related to the properties of post-saccadic visual errors that drive the plasticity of saccadic eye movements. In the scanner subjects executed blocks of saccadic eye movements toward a target that could be randomly displaced during the saccade. Such an intra-saccadic shift was randomly forward or backward, and could be either small or large. Post-saccadic visual errors induced activation in several cerebellar areas. These areas included, but were not limited to, the oculomotor vermis which is known for its role in saccadic control. Large errors yielded more activation in the cerebellar hemispheres, whereas small errors induced more activation in the vermis. Forward shifts induced more activation than backward shifts. Our results suggest that the differences in cerebellar activation patterns for different sizes and directions of post-saccadic errors could underlie the behavioral differences observed between various saccadic adaptation paradigms. In addition, the outcome argues for an extended range of cerebellar target areas in electrophysiological studies on saccadic eye movement control.

Keywords

Functional MRI Cerebellum Oculomotor control Saccadic eye movements Motor learning 

Notes

Acknowledgments

This study was funded by NWO-VIDI (MF and JvdG) and the Prinses Beatrix Fonds (JvdG). The authors like to thank Melissa Batson for proofreading the original draft of the manuscript.

Conflict of Interest

The authors state that there is no conflict of interest whatsoever regarding this paper.

References

  1. 1.
    Leigh RJ, Zee DS. The Neurology of Eye Movements. 4th ed. Oxford University Press; 2006.Google Scholar
  2. 2.
    Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain. 2007;130(1):10–35.PubMedCrossRefGoogle Scholar
  3. 3.
    McLaughlin SC. Parametric adjustment in saccadic eye movements. Percept Psychophys. 1967;2:359–62.CrossRefGoogle Scholar
  4. 4.
    Bridgeman B, Hendry D, Stark L. Failure to detect displacement of the visual world during saccadic eye movements. Vision Res. 1975;15(6):719–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Frens MA, van der Geest JN. Single errors predict the dynamics of saccade adaptation. Annual meeting of the Society of Neuroscience. San Diego CA; 2004.Google Scholar
  6. 6.
    Srimal R, Diedrichsen J, Ryklin EB, Curtis CE. Obligatory adaptation of saccade gains. J Neurophysiol. 2008;99(3):1554–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Hopp JJ, Fuchs AF. The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol. 2004;72(1):27–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Pelisson D, Alahyane N, Panouilleres M, Tilikete C. Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev. 2010;34(8):1103–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Iwamoto Y, Kaku Y. Saccade adaptation as a model of learning in voluntary movements. Exp Brain Res. 2010;204(2):145–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Wallman J, Fuchs AF. Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol. 1998;80(5):2405–16.PubMedGoogle Scholar
  11. 11.
    Bonnetblanc F, Baraduc P. Saccadic adaptation without retinal postsaccadic error. NeuroReport. 2007;18(13):1399–402.PubMedCrossRefGoogle Scholar
  12. 12.
    Robinson FR, Noto CT, Bevans SE. Effect of visual error size on saccade adaptation in monkey. J Neurophysiol. 2003;90(2):1235–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Ethier V, Zee DS, Shadmehr R. Changes in control of saccades during gain adaptation. J Neurosci. 2008;28(51):13929–37.PubMedCrossRefGoogle Scholar
  14. 14.
    Desmurget M, Pelisson D, Urquizar C, Prablanc C, Alexander GE, Grafton ST. Functional anatomy of saccadic adaptation in humans. Nat Neurosci. 1998;1(6):524–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P. Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci. 2008;27(1):132–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Desmurget M, Pelisson D, Grethe JS, Alexander GE, Urquizar C, Prablanc C, et al. Functional adaptation of reactive saccades in humans: a PET study. Exp Brain Res. 2000;132(2):243–59.PubMedCrossRefGoogle Scholar
  17. 17.
    van Broekhoven PCA, Schraa-Tam CKL, van der Lugt A, Smits M, Frens MA, van der Geest JN. Cerebellar contributions to the processing of saccadic errors. Cerebellum. 2009;8(3):403–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci. 2001;24:981–1004.PubMedCrossRefGoogle Scholar
  19. 19.
    Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80(4):1911–31.PubMedGoogle Scholar
  20. 20.
    Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19(24):10931–9.PubMedGoogle Scholar
  21. 21.
    Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57(11):2105–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Choi K-D, Kim H-J, Cho BM, Kim JS. Saccadic adaptation in lateral medullary and cerebellar infarction. Exp Brain Res. 2008;188(3):475–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Hayakawa Y, Nakajima T, Takagi M, Fukuhara N, Abe H. Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study. Ophthalmologica. 2002;216(6):399–405.PubMedCrossRefGoogle Scholar
  24. 24.
    Schraa-Tam CKL, van Broekhoven P, van der Geest JN, Frens MA, Smits M, van der Lugt A. Cortical and cerebellar activation induced by reflexive and voluntary saccades. Exp Brain Res. 2009;192(2):175–87.PubMedCrossRefGoogle Scholar
  25. 25.
    Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33(1):127–38.PubMedCrossRefGoogle Scholar
  26. 26.
    Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46(1):39–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Mcdowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn. 2008;68(3):255–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Thier P, Dicke PW, Haas R, Thielert C-D, Catz N. The role of the oculomotor vermis in the control of saccadic eye movements. Ann N Y Acad Sci. 2002;978:50–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Soetedjo R, Fuchs AF. Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci. 2006;26(29):7741–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol. 2005;15(24):2179–89.PubMedCrossRefGoogle Scholar
  31. 31.
    Diedrichsen J, Verstynen T, Schlerf J, Wiestler T. Advances in functional imaging of the human cerebellum. Curr Opin Neurol. 2010;23(4):382–7.PubMedGoogle Scholar
  32. 32.
    Howarth C, Peppiatt-Wildman C, Attwell D. The energy use associated with neural computation in the cerebellum. J Cereb Blood Flow Metab. 2010;30(2):403–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Dejardin S, Dubois S, Bodart JM, Schiltz C, Delinte A, Michel C, et al. PET study of human voluntary saccadic eye movements in darkness: effect of task repetition on the activation pattern. Eur J Neurosci. 1998;10(7):2328–36.PubMedCrossRefGoogle Scholar
  34. 34.
    Dieterich M, Bucher SF, Seelos KC, Brandt T. Cerebellar activation during optokinetic stimulation and saccades. Neurology. 2000;54(1):148–55.PubMedCrossRefGoogle Scholar
  35. 35.
    Nitschke MF, Arp T, Stavrou G, Erdmann C, Heide W. The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements—an fMRI study. Prog Brain Res. 2005;148:151–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Voogd J, Schraa-Tam CKL, van der Geest JN, de Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. Cerebellum. 2012;11(2):392–410.PubMedCrossRefGoogle Scholar
  37. 37.
    Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87(2):912–24.PubMedGoogle Scholar
  38. 38.
    Thier P, Ilg UJ. The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol. 2005;15(6):645–52.PubMedCrossRefGoogle Scholar
  39. 39.
    Nitschke MF, Binkofski F, Buccino G, Posse S, Erdmann C, Kömpf D, et al. Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp. 2004;22(2):155–64.PubMedCrossRefGoogle Scholar
  40. 40.
    Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural correlates of reach errors. J Neurosci. 2005;25(43):9919–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Esmee I. M. L. Liem
    • 1
  • Maarten A. Frens
    • 1
  • Marion Smits
    • 2
  • Jos N. van der Geest
    • 1
    Email author
  1. 1.Department of NeuroscienceRotterdamThe Netherlands
  2. 2.Department of RadiologyRotterdamThe Netherlands

Personalised recommendations