The Cerebellum

, Volume 12, Issue 2, pp 267–276 | Cite as

Cerebellar Function in Developmental Dyslexia

Review

Abstract

Developmental dyslexia is a genetically based neurobiological syndrome, which is characterized by reading difficulty despite normal or high general intelligence. Even remediated dyslexic readers rarely achieve fast, fluent reading. Some dyslexics also have impairments in attention, short-term memory, sequencing (letters, word sounds, and motor acts), eye movements, poor balance, and general clumsiness. The presence of “cerebellar” motor and fluency symptoms led to the proposal that cerebellar dysfunction contributes to the etiology of dyslexia. Supporting this, functional imaging studies suggest that the cerebellum is part of the neural network supporting reading in typically developing readers, and reading difficulties have been reported in patients with cerebellar damage. Differences in both cerebellar asymmetry and gray matter volume are some of the most consistent structural brain findings in dyslexics compared with good readers. Furthermore, cerebellar functional activation patterns during reading and motor learning can differ in dyslexic readers. Behaviorally, some children and adults with dyslexia show poorer performance on cerebellar motor tasks, including eye movement control, postural stability, and implicit motor learning. However, many dyslexics do not have cerebellar signs, many cerebellar patients do not have reading problems, and differences in dyslexic brains are found throughout the whole reading network, and not isolated to the cerebellum. Therefore, impaired cerebellar function is probably not the primary cause of dyslexia, but rather a more fundamental neurodevelopmental abnormality leads to differences throughout the reading network.

Keywords

Cerebellum Developmental dyslexia Magnetic resonance imaging Reading Implicit learning 

References

  1. 1.
    World Federation of Neurology. Report of research group on dyslexia and world illiteracy. Dallas: World Federation of Neurology; 1968.Google Scholar
  2. 2.
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington: American Psychiatric Association; 2000.Google Scholar
  3. 3.
    Scerri TS, Schulte-Korne G. Genetics of developmental dyslexia. Eur Child Adolesc Psychiatry. 2010;19(3):179–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Galaburda A, Livingstone M. Evidence for a magnocellular deficit in developmental dyslexia. Ann N Y Acad Sci. 1993;682:70–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Stein J. The magnocellular theory of developmental dyslexia. Dyslexia. 2001;7(1):12–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Benasich A, Tallal P. Infant discrimination of rapid auditory cues predicts later language impairment. Behav Brain Res. 2002;136:31–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Lyytinen H, Ahonen T, Eklund K, Guttorm T, Kulju P, Laakso ML, et al. Early development of children at familial risk for dyslexia—follow-up from birth to school age. Dyslexia. 2004;10(3):146–78.PubMedCrossRefGoogle Scholar
  8. 8.
    Sun YF, Lee JS, Kirby R. Brain imaging findings in dyslexia. Pediatr Neonatol. 2010;51(2):89–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Eckert M. Neuroanatomical markers for dyslexia: a review of dyslexia structural imaging studies. Neuroscientist. 2004;10(4):362–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Nicolson R, Fawcett A, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001;24(9):508–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Miall R, Weir D, Wolpert D, Stein J. Is the cerebellum a Smith predictor? J Motor Behav. 1993;25:203–16.CrossRefGoogle Scholar
  12. 12.
    Wolpert D, Miall R, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2(9):338–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Miall RC, King D. State estimation in the cerebellum. Cerebellum. 2008;7(4):572–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34(5):781–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6(6):242–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Kelly R, Strick P. Cerebellar loops with motor cortex and prefrontal cortex. J Neurosci. 2003;23:8432–44.PubMedGoogle Scholar
  20. 20.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedCrossRefGoogle Scholar
  22. 22.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Snider R, Stowell A. Electro-anatomical studies on a tactile system in the cerebellum of monkey (Macaca mulatta). Anat Rec. 1944;88:457.Google Scholar
  24. 24.
    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.PubMedCrossRefGoogle Scholar
  26. 26.
    O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Dehaene S. Reading in the brain: the science and evolution of a human invention. New York: Viking; 2009.Google Scholar
  29. 29.
    Peterson RL, Pennington BF. Developmental dyslexia. Lancet. 2012;379(9830):1997–2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci. 2000;23(12):613–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Fabbro F. Introduction to language and the cerebellum. J Neurolinguist. 2000;13(2–3):83–94.CrossRefGoogle Scholar
  32. 32.
    Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79(3):580–600.PubMedCrossRefGoogle Scholar
  33. 33.
    Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31(6):265–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.PubMedCrossRefGoogle Scholar
  35. 35.
    Stein J, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.PubMedGoogle Scholar
  36. 36.
    Akshoomoff N, Courchesne E, Townsend J. Attention coordination and anticipatory control. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 575–98.Google Scholar
  37. 37.
    Allen G, Buxton R, Wong E, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.PubMedCrossRefGoogle Scholar
  38. 38.
    Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia. 2003;41(11):1452–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Peng DL, Xu D, Jin Z, Luo Q, Ding GS, Perry C, et al. Neural basis of the non-attentional processing of briefly presented words. Hum Brain Mapp. 2003;18(3):215–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Ruz M, Wolmetz ME, Tudela P, McCandliss BD. Two brain pathways for attended and ignored words. Neuroimage. 2005;27(4):852–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Stowe LA, Paans AM, Wijers AA, Zwarts F. Activations of “motor” and other non-language structures during sentence comprehension. Brain Lang. 2004;89(2):290–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Ide JS, Li CS. A cerebellar thalamic cortical circuit for error-related cognitive control. Neuroimage. 2011;54(1):455–64.PubMedCrossRefGoogle Scholar
  43. 43.
    Ivry R. Cerebellar timing systems. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Adademic Press; 1997. p. 555–73.Google Scholar
  44. 44.
    Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978:302–17.PubMedCrossRefGoogle Scholar
  45. 45.
    Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14(2):225–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa M, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, et al. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120(Pt 10):1753–62.PubMedCrossRefGoogle Scholar
  49. 49.
    Gomez-Beldarrain M, Garcia-Monco J, Rubio B, Pascual-Leone A. Effect of focal cerebellar lesions on procedural learning in the serial reaction time task. Exp Brain Res. 1998;120:25–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Quintero-Gallego EA, Gomez CM, Casares EV, Marquez J, Perez-Santamaria FJ. Declarative and procedural learning in children and adolescents with posterior fossa tumours. Behav Brain Funct. 2006;2:9.PubMedCrossRefGoogle Scholar
  51. 51.
    Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex. 2010;46(7):845–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Turkeltaub PE, Gareau L, Flowers DL, Zeffiro T, Eden G. Development of neural mechanisms for reading. Nat Neurosci. 2003;6:767–73.PubMedCrossRefGoogle Scholar
  53. 53.
    Mechelli A, Price CJ, Henson RN, Friston KJ. Estimating efficiency a priori: a comparison of blocked and randomized designs. Neuroimage. 2003;18(3):798–805.PubMedCrossRefGoogle Scholar
  54. 54.
    Gizewski ER, Timmann D, Forsting M. Specific cerebellar activation during Braille reading in blind subjects. Hum Brain Mapp. 2004;22(3):229–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Carreiras M, Mechelli A, Estevez A, Price CJ. Brain activation for lexical decision and reading aloud: two sides of the same coin? J Cogn Neurosci. 2007;19(3):433–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Richards TL, Aylward EH, Field KM, Grimme AC, Raskind W, Richards AL, et al. Converging evidence for triple word form theory in children with dyslexia. Dev Neuropsychol. 2006;30(1):547–89.PubMedCrossRefGoogle Scholar
  57. 57.
    Joubert S, Beauregard M, Walter N, Bourgouin P, Beaudoin G, Leroux JM, et al. Neural correlates of lexical and sublexical processes in reading. Brain Lang. 2004;89(1):9–20.PubMedCrossRefGoogle Scholar
  58. 58.
    McDermott KB, Petersen SE, Watson JM, Ojemann JG. A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia. 2003;41(3):293–303.PubMedCrossRefGoogle Scholar
  59. 59.
    Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17(6):1476–85.PubMedCrossRefGoogle Scholar
  60. 60.
    Moretti R, Bava A, Torre P, Antonello R, Cazzato G. Reading errors in patients with cerebellar vermis lesions. J Neurol. 2002;249(4):461–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Moretti R, Torre P, Antonello R, Carraro N, Zambito-Marsala S, Ukmar M, et al. Peculiar aspects of reading and writing performances in patients with olivopontocerebellar atrophy. Percept Motor Skill. 2002;94(2):677–94.CrossRefGoogle Scholar
  62. 62.
    Rees G, Frackowiak R, Frith C. Two modulatory effects of attention that mediate object categorization in human cortex. Science. 1997;275(5301):835–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Facoetti A, Molteni M. The gradient of visual attention in developmental dyslexia. Neuropsychologia. 2001;39:352–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Marien P, Baillieux H, Smet HD, Engelborghs S, Wilssens I, Paquier P, et al. Cognitive, linguistic and affective disturbances following a right cerebellar artery infarction: a case study. Cortex. 2009;45:527–36.Google Scholar
  65. 65.
    Karaci R, Ozturk S, Ozbakir S, Cansaran N. Evaluation of language functions in acute cerebellar vascular diseases. J Stroke Cerebrovasc Dis. 2008;17(5):251–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Ben-Yehudah G, Fiez JA. Impact of cerebellar lesions on reading and phonological processing. Ann N Y Acad Sci. 2008;1145:260–74.PubMedCrossRefGoogle Scholar
  67. 67.
    McPherson W, Ackerman P, Dykman R. Auditory and visual rhyme judgments reveal differences and similarities between normal and disabled adolescent readers. Dyslexia. 1997;3:63–77.CrossRefGoogle Scholar
  68. 68.
    Shankweiler D, Liberman I. Misreading: A search for causes. In: Kavanagh J, Mattingly I, editors. Language by ear and by eye: the relationships between speech and reading. Cambridge: MIT Press; 1972. p. 293–317.Google Scholar
  69. 69.
    Lieberman I, Shankweiler D, Fischer F, Carter B. Explicit syllable and phoneme segmentation in the young child. J Exp Child Psych. 1974;18:201–12.CrossRefGoogle Scholar
  70. 70.
    Bradley L, Bryant P. Categorising sounds and learning to read—a causal connection. Nature. 1983;301:419–21.CrossRefGoogle Scholar
  71. 71.
    Snowling MJ. Phonemic deficits in developmental dyslexia. Psychol Res. 1981;43(2):219–34.PubMedCrossRefGoogle Scholar
  72. 72.
    Snowling M. Dyslexia. Oxford: Blackwell; 2000.Google Scholar
  73. 73.
    Ramus F. Neurobiology of dyslexia: a reinterpretation of the data. Trends Neurosci. 2004;27(12):720–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Wimmer H. Characteristics of developmental dyslexia in a regular writing system. Appl Psycholinguist. 1993;14(1):1.CrossRefGoogle Scholar
  75. 75.
    Stein JF, Fowler S. Diagnosis of dyslexia by means of a new indicator of eye dominance. Br J Ophthalmol. 1982;66(5):332–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Bucci MP, Bremond-Gignac D, Kapoula Z. Latency of saccades and vergence eye movements in dyslexic children. Exp Brain Res. 2008;188(1):1–12.PubMedCrossRefGoogle Scholar
  77. 77.
    Bucci MP, Bremond-Gignac D, Kapoula Z. Poor binocular coordination of saccades in dyslexic children. Graefes Arch Clin Exp Ophthalmol. 2008;246(3):417–28.PubMedCrossRefGoogle Scholar
  78. 78.
    Fawcett AJ, Nicolson RI. Performance of dyslexic children on cerebellar and cognitive tests. J Motor Behav. 1999;31(1):68–78.CrossRefGoogle Scholar
  79. 79.
    Stoodley CJ, Fawcett AJ, Nicolson RI, Stein JF. Impaired balancing ability in dyslexic children. Exp Brain Res. 2005;167(3):370–80.PubMedCrossRefGoogle Scholar
  80. 80.
    Wolf M, Obregon M. Early naming deficits, developmental dyslexia, and a specific deficit hypothesis. Brain Lang. 1992;42:219–47.PubMedCrossRefGoogle Scholar
  81. 81.
    Nicolson RI, Fawcett AJ. Reaction times and dyslexia. Q J Exp Psychol A. 1994;47(1):29–48.PubMedGoogle Scholar
  82. 82.
    Stoodley CJ, Stein JF. A processing speed deficit in dyslexic adults? Evidence from a peg-moving task. Neurosci Lett. 2006;399(3):264–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Vicari S, Marotta L, Menghini D, Molinari M, Petrosini L. Implicit learning deficit in children with developmental dyslexia. Neuropsychologia. 2003;41:108–14.PubMedCrossRefGoogle Scholar
  84. 84.
    Vicari S, Finzi A, Menghini D, Marotta L, Baldi S, Petrosini L. Do children with developmental dyslexia have an implicit learning deficit? J Neurol Neurosurg Psychiatry. 2005;76(10):1392–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Howard Jr JH, Howard DV, Japikse KC, Eden GF. Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia. 2006;44(7):1131–44.PubMedCrossRefGoogle Scholar
  86. 86.
    Stoodley CJ, Harrison EP, Stein JF. Implicit motor learning deficits in dyslexic adults. Neuropsychologia. 2006;44(5):795–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Stoodley CJ, Ray NJ, Jack A, Stein JF. Implicit learning in control, dyslexic, and garden-variety poor readers. Ann N Y Acad Sci. 2008;1145:173–83.PubMedCrossRefGoogle Scholar
  88. 88.
    Cornelissen P, Richardson A, Mason A, Fowler S, Stein J. Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vis Res. 1995;35:1483–94.PubMedCrossRefGoogle Scholar
  89. 89.
    McAnally KI, Stein JF. Auditory temporal coding in dyslexia. Proc Roy Soc Lond B-Biol Sci. 1996;263(1373):961–5.CrossRefGoogle Scholar
  90. 90.
    Stein J, Talcott J, Witton C. The sensorimotor basis of developmental dyslexia. In: Fawcett A, editor. Dyslexia: theory and good practice. London: Whurr; 2001. p. 65–88.Google Scholar
  91. 91.
    Talcott J, Witton C. A sensory linguistic approach to the development of normal and dysfunctional reading skills. In: Witruk E, Friederici A, Lachmann T, editors. Basic functions of language, reading and reading disability. Boston: Kluwer; 2002. p. 213–40.CrossRefGoogle Scholar
  92. 92.
    Boets B, Wouters J, van Wieringen A, De Smedt B, Ghesquiere P. Modelling relations between sensory processing, speech perception, orthographic and phonological ability, and literacy achievement. Brain Lang. 2008;106(1):29–40.PubMedCrossRefGoogle Scholar
  93. 93.
    Boets B, Vandermosten M, Cornelissen P, Wouters J, Ghesquiere P. Coherent motion sensitivity and reading development in the transition from prereading to reading stage. Child Dev. 2011;82(3):854–69.PubMedCrossRefGoogle Scholar
  94. 94.
    Boets B, Vandermosten M, Poelmans H, Luts H, Wouters J, Ghesquiere P. Preschool impairments in auditory processing and speech perception uniquely predict future reading problems. Res Dev Disabil. 2011;32(2):560–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Menghini D, Finzi A, Benassi M, Bolzani R, Facoetti A, Giovagnoli S, et al. Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychologia. 2010;48(4):863–72.PubMedCrossRefGoogle Scholar
  96. 96.
    Nicolson RI, Fawcett AJ. Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex. 2011;47(1):117–27.PubMedCrossRefGoogle Scholar
  97. 97.
    Rae C, Harasty JA, Dzendrowskyj TE, Talcott JB, Simpson JM, Blamire AM, et al. Cerebellar morphology in developmental dyslexia. Neuropsychologia. 2002;40(8):1285–92.PubMedCrossRefGoogle Scholar
  98. 98.
    Kibby MY, Fancher JB, Markanen R, Hynd GW. A quantitative magnetic resonance imaging analysis of the cerebellar deficit hypothesis of dyslexia. J Child Neurol. 2008;23(4):368–80.PubMedCrossRefGoogle Scholar
  99. 99.
    Leonard CM, Eckert MA, Lombardino LJ, Oakland T, Kranzler J, Mohr CM, et al. Anatomical risk factors for phonological dyslexia. Cereb Cortex. 2001;11(2):148–57.PubMedCrossRefGoogle Scholar
  100. 100.
    Eckert M, Leonard C, Richards T, Aylward E, Thomson J, Berninger V. Anatomical correlates of dyslexia: frontal and cerebellar findings. Brain. 2003;126:482–94.PubMedCrossRefGoogle Scholar
  101. 101.
    Leonard CM, Kuldau JM, Maron L, Ricciuti N, Mahoney B, Bengtson M, et al. Identical neural risk factors predict cognitive deficit in dyslexia and schizophrenia. Neuropsychology. 2008;22(2):147–58.PubMedCrossRefGoogle Scholar
  102. 102.
    Brambati SM, Termine C, Ruffino M, Stella G, Fazio F, Cappa SF, et al. Regional reductions of gray matter volume in familial dyslexia. Neurology. 2004;63(4):742–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Brown W, Eliez S, Menon V, Rumsey J, White C, Reiss A. Preliminary evidence of widespread morphological variations in the brain in dyslexia. Neurology. 2001;56(6):781–3.PubMedCrossRefGoogle Scholar
  104. 104.
    Kronbichler M, Wimmer H, Staffen W, Hutzler F, Mair A, Ladurner G. Developmental dyslexia: gray matter abnormalities in the occipitotemporal cortex. Hum Brain Mapp. 2008;29(5):613–25.PubMedCrossRefGoogle Scholar
  105. 105.
    Silani G, Frith U, Demonet J, Fazio F, Perani D, Price C, et al. Brain abnormalities underlying altered activation in dyslexia: a voxel based morphometry study. Brain. 2005;128:2453–61.PubMedCrossRefGoogle Scholar
  106. 106.
    Hoeft F, Meyler A, Hernandez A, Juel C, Taylor-Hill H, Martindale JL, et al. Functional and morphometric brain dissociation between dyslexia and reading ability. Proc Natl Acad Sci USA. 2007;104(10):4234–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Stoodley CJ, Oates JM, Sawyer EJ, Desko AG, Shakerdge NB, editors. Structural differences in the cerebellum in autism spectrum disorders, ADHD, and developmental dyslexia. Society for Neuroscience Annual Meeting, Washington, DC, USA; 2011.Google Scholar
  108. 108.
    Pernet CR, Poline JB, Demonet JF, Rousselet GA. Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci. 2009;10:67.PubMedCrossRefGoogle Scholar
  109. 109.
    Bishop D. Cerebellar abnormalities in developmental dyslexia: cause, correlate or consequence? Cortex. 2002;38:491–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Raschle NM, Chang M, Gaab N. Structural brain alterations associated with dyslexia predate reading onset. Neuroimage. 2011;57(3):742–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Brunswick N, McCrory E, Price C, Frith C, Frith U. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: a search for Wernicke’s Wortschatz? Brain. 1999;122:1901–17.PubMedCrossRefGoogle Scholar
  112. 112.
    Nicolson RI, Fawcett AJ, Berry EL, Jenkins IH, Dean P, Brooks DJ. Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet. 1999;353(9165):1662–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Menghini D, Hagberg G, Caltagirone C, Petrosini L, Vicari S. Implicit learning deficits in dyslexic adults: an fMRI study. Neuroimage. 2006;33:1218–26.PubMedCrossRefGoogle Scholar
  114. 114.
    Horwitz B, Rumsey JM, Donohue BC. Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA. 1998;95(15):8939–44.PubMedCrossRefGoogle Scholar
  115. 115.
    Stanberry LI, Richards TL, Berninger VW, Nandy RR, Aylward EH, Maravilla KR, et al. Low-frequency signal changes reflect differences in functional connectivity between good readers and dyslexics during continuous phoneme mapping. Magn Reson Imaging. 2006;24(3):217–29.PubMedCrossRefGoogle Scholar
  116. 116.
    Baillieux H, Vandervliet EJ, Manto M, Parizel PM, De Deyn PP, Marien P. Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain Lang. 2009;108(2):122–32.PubMedCrossRefGoogle Scholar
  117. 117.
    Siok WT, Niu Z, Jin Z, Perfetti CA, Tan LH. A structural-functional basis for dyslexia in the cortex of Chinese readers. Proc Natl Acad Sci USA. 2008;105(14):5561–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Hu W, Lee HL, Zhang Q, Liu T, Geng LB, Seghier ML, et al. Developmental dyslexia in Chinese and English populations: dissociating the effect of dyslexia from language differences. Brain. 2010;133(Pt 6):1694–706.PubMedCrossRefGoogle Scholar
  119. 119.
    Beneventi H, Tonnessen FE, Ersland L, Hugdahl K. Working memory deficit in dyslexia: behavioral and FMRI evidence. Int J Neurosci. 2010;120(1):51–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Stoodley CJ, Stein JF. The cerebellum and dyslexia. Cortex. 2011;47(1):101–16.PubMedCrossRefGoogle Scholar
  121. 121.
    Hutzler F, Kronbichler M, Jacobs AM, Wimmer H. Perhaps correlational but not causal: no effect of dyslexic readers’ magnocellular system on their eye movements during reading. Neuropsychologia. 2006;44(4):637–48.PubMedCrossRefGoogle Scholar
  122. 122.
    Fischer B, Hartnegg K. Stability of gaze control in dyslexia. Strabismus. 2000;8(2):119–22.PubMedGoogle Scholar
  123. 123.
    Stein J, Fowler S. Effect of monocular occlusion on visuomotor perception and reading in dyslexic children. Lancet. 1985;2(8446):69–73.PubMedCrossRefGoogle Scholar
  124. 124.
    Fowler M. Binocular control in dyslexics. In: Stein J, editor. Vision and visual dyslexia. Boston: CRC; 1991. p. 141–6.Google Scholar
  125. 125.
    Eden GF, Stein JF, Wood HM, Wood FB. Differences in eye movements and reading problems in dyslexic and normal children. Vision Res. 1994;34(10):1345–58.PubMedCrossRefGoogle Scholar
  126. 126.
    Jainta S, Kapoula Z. Dyslexic children are confronted with unstable binocular fixation while reading. PLoS One. 2011;6(4):e18694.PubMedCrossRefGoogle Scholar
  127. 127.
    Biscaldi M, Gezeck S, Stuhr V. Poor saccadic control correlates with dyslexia. Neuropsychologia. 1998;36(11):1189–202.PubMedCrossRefGoogle Scholar
  128. 128.
    Fischer B, Hartnegg K. Effects of visual training on saccade control in dyslexia. Perception. 2000;29(5):531–42.PubMedCrossRefGoogle Scholar
  129. 129.
    Ram-Tsur R, Faust M, Caspi A, Gordon CR, Zivotofsky AZ. Evidence for ocular motor deficits in developmental dyslexia: application of the double-step paradigm. Invest Ophthalmol Vis Sci. 2006;47(10):4401–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Rayner K. Eye movements in reading and information processing: 20 years of research. Psychol Bull. 1998;124(3):372–422.PubMedCrossRefGoogle Scholar
  131. 131.
    De Luca M, Borrelli M, Judica A, Spinelli D, Zoccolotti P. Reading words and pseudowords: an eye movement study of developmental dyslexia. Brain Lang. 2002;80(3):617–26.PubMedCrossRefGoogle Scholar
  132. 132.
    Hutzler F, Wimmer H. Eye movements of dyslexic children when reading in a regular orthography. Brain Lang. 2004;89(1):235–42.PubMedCrossRefGoogle Scholar
  133. 133.
    Yap R, van der Leij A. Testing the automatization deficit hypothesis of dyslexia via a dual-task paradigm. J Learn Disabil. 1994;27:660–5.PubMedCrossRefGoogle Scholar
  134. 134.
    Nicolson RI, Fawcett AJ. Automaticity: a new framework for dyslexia research? Cognition. 1990;35(2):159–82.PubMedCrossRefGoogle Scholar
  135. 135.
    Moe-Nilssen R, Helbostad J, Talcott J, Toennessen F. Balance and gait in children with dyslexia. Exp Brain Res. 2003;150:237–44.PubMedGoogle Scholar
  136. 136.
    Getchell N, Pabreja P, Neeld K, Carrio V. Comparing children with and without dyslexia on the Movement Assessment Battery for Children and the Test of Gross Motor Development. Percept Mot Skills. 2007;105(1):207–14.PubMedCrossRefGoogle Scholar
  137. 137.
    Viholainen H, Aro M, Ahonen T, Crawford S, Cantell M, Kooistra L. Are balance problems connected to reading speed or the familial risk of dyslexia? Dev Med Child Neurol. 2011;53(4):350–3.PubMedCrossRefGoogle Scholar
  138. 138.
    van der Leij A, van Daal VH. Automatization aspects of dyslexia: speed limitations in word identification, sensitivity to increasing task demands, and orthographic compensation. J Learn Disabil. 1999;32(5):417–28.PubMedCrossRefGoogle Scholar
  139. 139.
    Wimmer H, Mayringer H, Raberger T. Reading and dual-task balancing: evidence against the automatization deficit explanation of developmental dyslexia. J Learn Disabil. 1999;32:473–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Raberger T, Wimmer H. On the automaticity/cerebellar deficit hypothesis of dyslexia: balancing and continuous rapid naming in dyslexics and ADHD children. Neuropsychologia. 2003;41(11):1493–7.PubMedCrossRefGoogle Scholar
  141. 141.
    Ramus F, Rosen S, Dakin SC, Day BL, Castellote JM, White S, et al. Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain. 2003;126(Pt 4):841–65.PubMedCrossRefGoogle Scholar
  142. 142.
    Stoodley CJ, Fawcett AJ, Nicolson RI, Stein JF. Balancing and pointing tasks in dyslexic and control adults. Dyslexia. 2006;12(4):276–88.PubMedCrossRefGoogle Scholar
  143. 143.
    Savage R. Motor skills, automaticity and developmental dyslexia: a review of the research literature. Read Writing. 2004;17:301–24.CrossRefGoogle Scholar
  144. 144.
    Rochelle K, Talcott J. Impaired balance in developmental dyslexia? A meta-analysis of the contending evidence. J Child Psych Psychiatry. 2006;47:1159–66.CrossRefGoogle Scholar
  145. 145.
    Velay JL, Daffaure V, Giraud K, Habib M. Interhemispheric sensorimotor integration in pointing movements: a study on dyslexic adults. Neuropsychologia. 2002;40(7):827–34.PubMedCrossRefGoogle Scholar
  146. 146.
    Catts H, Gillispie M, Leonard L, Kail R, Miller C. The role of speed of processing, rapid naming, and phonological awareness in reading achievement. J Learn Disabil. 2002;35:509–24.PubMedCrossRefGoogle Scholar
  147. 147.
    Yeo C, Hesslow G. Cerebellum and conditioned reflexes. Trends Cogn Sci. 1998;2(9):322–30.PubMedCrossRefGoogle Scholar
  148. 148.
    Nicolson R, Daum I, Schugens M, Fawcett A, Schultz A. Eyeblink conditioning indicates cerebellar abnormality in dyslexia. Exp Brain Res. 2002;143:42–50.PubMedCrossRefGoogle Scholar
  149. 149.
    Coffin JM, Baroody S, Schneider K, O’Neill J. Impaired cerebellar learning in children with prenatal alcohol exposure: a comparative study of eyeblink conditioning in children with ADHD and dyslexia. Cortex. 2005;41(3):389–98.PubMedCrossRefGoogle Scholar
  150. 150.
    Sperling A, Lu Z-L, Manis F. Slower implicit categorical learning in adult poor readers. Ann Dyslexia. 2004;54(2):281–303.PubMedCrossRefGoogle Scholar
  151. 151.
    Jimenez-Fernandez G, Vaquero JM, Jimenez L, Defior S. Dyslexic children show deficits in implicit sequence learning, but not in explicit sequence learning or contextual cueing. Ann Dyslexia. 2011;61(1):85–110.PubMedCrossRefGoogle Scholar
  152. 152.
    Kelly S, Griffiths S, Frith U. Evidence for implicit sequence learning in dyslexia. Dyslexia. 2002;8(1):43–52.PubMedCrossRefGoogle Scholar
  153. 153.
    Waber D, Marcus D, Forbes P, Bellinger D, Weiler M, Sorenson L, et al. Motor sequence learning and reading ability: is poor reading associated with sequencing deficits? J Exp Child Psychol. 2003;84:338–54.PubMedCrossRefGoogle Scholar
  154. 154.
    Russeler J, Gerth I, Munte TF. Implicit learning is intact in adult developmental dyslexic readers: evidence from the serial reaction time task and artificial grammar learning. J Clin Exp Neuropsychol. 2006;28(5):808–27.PubMedCrossRefGoogle Scholar
  155. 155.
    Bennett IJ, Romano JC, Howard Jr JH, Howard DV. Two forms of implicit learning in young adults with dyslexia. Ann N Y Acad Sci. 2008;1145:184–98.PubMedCrossRefGoogle Scholar
  156. 156.
    Boada R, Pennington B. Deficient implicit phonological representations in children with dyslexia. J Exp Child Psychol. 2006;95:153–93.PubMedCrossRefGoogle Scholar
  157. 157.
    Ramus F. Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction? Curr Opin Neurobiol. 2003;13(2):212–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Rochelle KS, Witton C, Talcott JB. Symptoms of hyperactivity and inattention can mediate deficits of postural stability in developmental dyslexia. Exp Brain Res. 2009;192(4):627–33.PubMedCrossRefGoogle Scholar
  159. 159.
    Reynolds D, Nicolson R, Hambly H. Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia. 2003;9:48–71.PubMedCrossRefGoogle Scholar
  160. 160.
    Richards I, Moores E, Witton C, Reddy P, Rippon G, Rochelle K, et al. Science, sophistry and ‘commercial sensitivity’: comments on ‘Evaluation of an exercise-based treatment for children with reading difficulties’, by Reynolds, Nicolson and Hambly. Dyslexia. 2003;9:146–50.PubMedCrossRefGoogle Scholar
  161. 161.
    Snowling MJ, Hulme C. A critique of claims from Reynolds, Nicolson & Hambly (2003) that DDAT is an effective treatment for children with reading difficulties—‘lies, damned lies and (inappropriate) statistics’? Dyslexia. 2003;9(2):127–33. discussion 34–5.PubMedCrossRefGoogle Scholar
  162. 162.
    Reynolds D, Nicolson RI. Follow-up of an exercise-based treatment for children with reading difficulties. Dyslexia. 2007;13(2):78–96.PubMedCrossRefGoogle Scholar
  163. 163.
    Rack J, Snowling M, Hulme C, Gibbs S. No evidence that an exercise-based treatment program (DDAT) has specific benefits for children with reading difficulties. Dyslexia. 2007;13:97–104.PubMedCrossRefGoogle Scholar
  164. 164.
    Joly-Pottuz B, Mercier M, Leynaud A, Habib M. Combined auditory and articulatory training improves phonological deficit in children with dyslexia. Neuropsychol Rehabil. 2008;18(4):402–29.PubMedCrossRefGoogle Scholar
  165. 165.
    Barth AE, Denton CA, Stuebing KK, Fletcher JM, Cirino PT, Francis DJ, et al. A test of the cerebellar hypothesis of dyslexia in adequate and inadequate responders to reading intervention. J Int Neuropsychol Soc. 2010;16(3):526–36.PubMedCrossRefGoogle Scholar
  166. 166.
    Shaywitz BA, Shaywitz SE, Blachman BA, Pugh KR, Fulbright RK, Skudlarski P, et al. Development of left occipitotemporal systems for skilled reading in children after a phonologically- based intervention. Biol Psychiatry. 2004;55(9):926–33.PubMedCrossRefGoogle Scholar
  167. 167.
    Aylward EH, Richards TL, Berninger VW, Nagy WE, Field KM, Grimme AC, et al. Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology. 2003;61(2):212–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Eden GF, Jones KM, Cappell K, Gareau L, Wood FB, Zeffiro TA, et al. Neural changes following remediation in adult developmental dyslexia. Neuron. 2004;44(3):411–22.PubMedCrossRefGoogle Scholar
  169. 169.
    Krafnick AJ, Flowers DL, Napoliello EM, Eden GF. Gray matter volume changes following reading intervention in dyslexic children. Neuroimage. 2011;57(3):733–41.PubMedCrossRefGoogle Scholar
  170. 170.
    Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N, Hulme C, et al. Neural systems predicting long-term outcome in dyslexia. Proc Natl Acad Sci USA. 2011;108(1):361–6.PubMedCrossRefGoogle Scholar
  171. 171.
    Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457–87.PubMedCrossRefGoogle Scholar
  172. 172.
    Marien P, Verhoeven J, Brouns R, De Witte L, Dobbeleir A, De Deyn PP. Apraxic agraphia following a right cerebellar hemorrhage. Neurology. 2007;69(9):926–9.PubMedCrossRefGoogle Scholar
  173. 173.
    De Smet HJ, Engelborghs S, Paquier PF, De Deyn PP, Marien P. Cerebellar-induced apraxic agraphia: a review and three new cases. Brain Cogn. 2011;76(3):424–34.PubMedCrossRefGoogle Scholar
  174. 174.
    Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6(3):202–13.PubMedCrossRefGoogle Scholar
  175. 175.
    O’Hare A, Khalid S. The association of abnormal cerebellar function in children with developmental coordination disorder and reading difficulties. Dyslexia. 2002;8(4):234–48.PubMedCrossRefGoogle Scholar
  176. 176.
    Nicolson RI, Fawcett AJ. Developmental dyslexia, learning and the cerebellum. J Neural Transm Suppl. 2005;69:19–36.PubMedGoogle Scholar
  177. 177.
    Paracchini S, Scerri T, Monaco A. The genetic lexicon of dyslexia. Annu Rev Genomics Hum Genet. 2007;8:57–79.PubMedCrossRefGoogle Scholar
  178. 178.
    Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59(2):1560–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PsychologyAmerican UniversityWashingtonUSA
  2. 2.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations