Advertisement

The Cerebellum

, Volume 12, Issue 2, pp 245–266 | Cite as

Magnetic Resonance Imaging Biomarkers in Patients with Progressive Ataxia: Current Status and Future Direction

  • Stuart Currie
  • Marios Hadjivassiliou
  • Ian J Craven
  • Iain D Wilkinson
  • Paul D Griffiths
  • Nigel Hoggard
Review

Abstract

A diagnostic challenge commonly encountered in neurology is that of an adult patient presenting with ataxia. The differential is vast and clinical assessment alone may not be sufficient due to considerable overlap between different causes of ataxia. Magnetic resonance (MR)-based biomarkers such as voxel-based morphometry, MR spectroscopy, diffusion-weighted and diffusion-tensor imaging and functional MR imaging are gaining great attention for their potential as indicators of disease. A number of studies have reported correlation with clinical severity and underlying pathophysiology, and in some cases, MR imaging has been shown to allow differentiation of conditions causing ataxia. However, despite recent advances, their sensitivity and specificity vary. In addition, questions remain over their validity and reproducibility, especially when applied in routine clinical practice. This article extensively reviews the current literature regarding MR-based biomarkers for the patient with predominantly adult-onset ataxia. Imaging features characteristic of a particular ataxia are provided and features differentiating ataxia groups and subgroups are discussed. Finally, discussion will turn to the feasibility of applying these biomarkers in routine clinical practice.

Keywords

Magnetic resonance imaging Ataxia Adult Sporadic 

Notes

Conflict of Interests

All authors report no conflict of interests

Financial Disclosure

None

References

  1. 1.
    Luft AR, Skalej M, Welte D, Kolb R, Burk K, Schulz JB, et al. A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magn Reson Med. 1998;40(1):143–51. Clinical trial.PubMedCrossRefGoogle Scholar
  2. 2.
    Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11(6 Pt 1):805–21. Research support, non-US Government review.PubMedCrossRefGoogle Scholar
  3. 3.
    Good C, Johnsrude I, Ashburner J, Henson R, Friston K, Frackowiak R. A voxel-based morphometric study of aging in 465 normal adult human brains. Neuroimage. 2001;14:21–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Moffett J, Ross B, Arun P, Madhavarao C, Namboodiri A. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81:89–131.PubMedCrossRefGoogle Scholar
  5. 5.
    Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec. 2001;265:54–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Castillo M, Kwock L, Mukherji S. Clinical applications of proton MR spectroscopy. Am J Radiol. 1996;17:1–15.Google Scholar
  7. 7.
    Miller B. A Review of Chemical Issues in 1H NMR Spectroscopy: N-Acetyl-L-aspartate, Creatine and Choline. NMR Biomed. 1991;4:47–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosen Y, Lenkinski R. Recent advances in magnetic resonance neurospectroscopy. Neurother. 2007;4:330–45.CrossRefGoogle Scholar
  9. 9.
    Farina L, Pareyson D, Minati L, Ceccherini I, Chiapparini L, Romano S, et al. Can MR imaging diagnose adult-onset Alexander disease? AJNR Am J Neuroradiol. 2008;29(6):1190–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Mountford C, Stanwell P, Lin A, Ramadan S, Ross B. Neurospectroscopy: the past, present and future. Chem Rev. 2010;110:3060–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Prichard J. What the clinician can learn from MRS lactate measurements [review]. NMR Biomed. 1991;4:99–102.PubMedCrossRefGoogle Scholar
  12. 12.
    Barkovich AJ, Good WV, Koch TK, Berg BO. Mitochondrial disorders: analysis of their clinical and imaging characteristics. AJNR Am J Neuroradiol. 1993;14(5):1119–37.PubMedGoogle Scholar
  13. 13.
    Petroff O, Graham G, Blamire A. Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes. Neurology. 1992;42:1349–54.PubMedCrossRefGoogle Scholar
  14. 14.
    VonRogulija P, Kovac W, Schmid H. Metroniadazole encephalopathy in rats. Acta Neuropathol. 1973;25:36–44.CrossRefGoogle Scholar
  15. 15.
    Ross B, Coletti P, Lin A. Magnetic resonance spectroscopy of the brain: neurospectroscopy. In: Elderman R, Hesselink J, Zlatkin M, Crues J, editors. Clinical magnetic resonance imaging. 3rd ed. Philadelphia: Saunders; 2006. p. 1840–901.Google Scholar
  16. 16.
    Della Nave R, Foresti S, Tessa C, Moretti M, Ginestroni A, Gavazzi C, et al. ADC mapping of neurodegeneration in the brainstem and cerebellum of patients with progressive ataxias. Neuroimage. 2004;22(2):698–705.PubMedCrossRefGoogle Scholar
  17. 17.
    Raz E, Cercignani M, Sbardella E, Totaro P, Pozzilli C, Bozzali M, et al. Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of white and grey matter. Radiology. 2010;254(1):227–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Matthews P, Jezzard P. Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatr. 2004;75:6–12.PubMedGoogle Scholar
  19. 19.
    Matilla-Duenas A. The ever expanding spinocerebellar ataxias. Editorial. Cerebellum. 2012. doi: 10.1007/s12311-012-0376-4.
  20. 20.
    Burk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(Pt 5):1497–505.PubMedCrossRefGoogle Scholar
  21. 21.
    Schols L, Amoiridis G, Buttner T, Przuntek H, Epplen J, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genertically defined subtypes. Ann Neurol. 1997;42:924–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Ginestroni A, Della Nave R, Tessa C, Giannelli M, De Grandis D, Plasmati R, et al. Brain structural damage in spinocerebellar ataxia type 1: a VBM study. J Neurol. 2008;255(8):1153–8. Research support, non-US Government review.PubMedCrossRefGoogle Scholar
  23. 23.
    Nagaoka U, Suzuki Y, Kawanami T, Kurita K, Shikama Y, Honda K, et al. Regional differences in genetic subgroup frequency in hereditary cerebellar ataxia, and a morphometrical study of brain MR images in SCA1, MJD and SCA6. J Neurol Sci. 1999;164:187–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Schulz JB, Borkert J, Wolf S, Schmitz-Hubsch T, Rakowicz M, Mariotti C, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49(1):158–68 (erratum appears in Neuroimage. 2010;50(4):1712) (Research support, non-US Government).Google Scholar
  25. 25.
    Adachi M, Kawanami T, Ohshima H, Hosoya T. Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology. 2006;48(1):8–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Adachi M, Hosoya T, Yamaguchi K, Kawanami T, Kato T. Diffusion-and T2-weighted MRI of the transverse pontine fibres in spinocerebellar degeneration. Neuroradiology. 2000;42:803–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Mascalchi M, Tosetti M, Plasmati R, Bianchi MC, Tessa C, Salvi F, et al. Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Annal Neurol. 1998;43(2):244–52. Clinical trial controlled clinical trial research support, Non-US Government.PubMedCrossRefGoogle Scholar
  28. 28.
    Guerrini L, Lolli F, Ginestroni A, Belli G, Della Nave R, Tessa C, et al. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain. 2004;127(Pt 8):1785–95. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  29. 29.
    Oz G, Hutter D, Tkac I, Clark HB, Gross MD, Jiang H, et al. Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord. 2010;25(9):1253–61. Research support, NIH, Extramural research support, non-US Government.PubMedCrossRefGoogle Scholar
  30. 30.
    Oz G, Nelson CD, Koski DM, Henry P-G, Marjanska M, Deelchand DK, et al. Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci. 2010;30(10):3831–8. Comparative study research support, NIH, Extramural research support, non-US Government.PubMedCrossRefGoogle Scholar
  31. 31.
    Jayakumar P, Desai S, Pal P, Balivada S, Ellika S, Kalladka D. Functional correlates of incoordination in patients with spinocerebellar ataxia 1: a preliminary fMRI study. J Clin Neurosci. 2008;15:269–77.PubMedCrossRefGoogle Scholar
  32. 32.
    Giuffrida S, Saponara R, Restivo DA, Trovato SA, Tomarchio L, Pugliares P, et al. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol. 1999;246(5):383–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Ueyama H, Kumamoto T, Nagao S, Mita S, Uchino M, Tsuda T. Clinical and genetic studies of spinocerebellar ataxia type 2 in Japanese kindreds. Acta Neurol Scand. 1998;98(6):427–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Yamanouchi N, Okada S, Kodama K. White matter changes caused by chronic solvent abuse. AJNR Am J Neuroradiol. 1995;16:1643–9.PubMedGoogle Scholar
  35. 35.
    Chakravarty A, Mukherjee S. Autosomal dominant cerebellar ataxias in ethnic Bengalees in West Bengal—an Eastern Indian state. Acta Neurol Scand. 2002;105:202–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB, et al. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain. 1998;121(Pt 9):1687–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Mandelli ML, De Simone T, Minati L, Bruzzone MG, Mariotti C, Fancellu R, et al. Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. AJNR Am J Neuroradiol. 2007;28(10):1996–2000. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  38. 38.
    Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, et al. Brain structural damage in spinocerebellar ataxia type 2. A voxel-based morphometry study. Mov Disord. 2008;23(6):899–903. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  39. 39.
    Ying SH, Choi SI, Perlman SL, Baloh RW, Zee DS, Toga AW. Pontine and cerebellar atrophy correlate with clinical disability in SCA2. Neurology. 2006;66(3):424–6. Research support, NIH, Extramural research support, non-US Governmentt.PubMedCrossRefGoogle Scholar
  40. 40.
    Brenneis C, Bosch SM, Schocke M, Wenning GK, Poewe W. Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport. 2003;14(14):1799–802. Comparative Study.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee YC, Liu CS, Wu HM, Wang PS, Chang MH, Soong BW. The ‘hot cross bun’ sign in the patients with spinocerebellar ataxia. Eur J Neurol. 2009;16(4):513–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Boesch SM, Wolf C, Seppi K, Felber S, Wenning GK, Schocke M. Differentiation of SCA2 from MSA-C using proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging. 2007;25(3):564–9. Comparative Study Controlled Clinical Trial.PubMedCrossRefGoogle Scholar
  43. 43.
    Boesch SM, Schocke M, Burk K, Hollosi P, Fornai F, Aichner FT, et al. Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging. 2001;13(4):553–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Oz G, Iltis I, Hutter D, Thomas W, Bushara KO, Gomez CM. Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum. 2011;10(2):208–17. Research support, NIH, Extramural research support, non-US Government.PubMedCrossRefGoogle Scholar
  45. 45.
    Lukas C, Schols L, Bellenberg B, Rub U, Przuntek H, Schmid G, et al. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett. 2006;408(3):230–5. Comparative study research support, Non-US Government.PubMedCrossRefGoogle Scholar
  46. 46.
    Murata Y, Yamaguchi S, Kawakami H, Imon Y, Maruyama H, Sakai T, et al. Characteristic magnetic resonance imaging findings in Machado–Joseph disease. Arch Neurol. 1998;55:33–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Rosenberg R, Nyhan W, Bay C, Shore P. Autosomal dominant striatonigral degeneration. A clinical, pathologic, and biochemical study of a new genetic disorder. Neurology. 1976;26:703–14.PubMedCrossRefGoogle Scholar
  48. 48.
    Lukas C, Hahn HK, Bellenberg B, Hellwig K, Globas C, Schimrigk SK, et al. Spinal cord atrophy in spinocerebellar ataxia type 3 and 6: impact on clinical disability. J Neurol. 2008;255(8):1244–9. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  49. 49.
    Butteriss D, Chinnery P, Birchall D. Radiological characterization of spinocerebellar ataxia type 6. Br J Radiol. 2005;78(932):694–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Satoh JI, Tokumoto H, Yukitake M, Matsui M, Matsuyama Z, Kawakami H, et al. Spinocerebellar ataxia type 6: MRI of three Japanese patients. Neuroradiology. 1998;40(4):222–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Stevanin G, Durr A, David G, Didierjean O, Cancel G, Rivaud S, et al. Clinical and molecular features of spinocerebellar ataxia type 6. Neurology. 1997;49(5):1243–6. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  52. 52.
    Sethi KD, Jankovic J. Dystonia in spinocerebellar ataxia type 6. Mov Disord. 2002;17(1):150–3. Case Reports.PubMedCrossRefGoogle Scholar
  53. 53.
    Ishikawa K, Watanabe M, Yoshizawa K, Fujita T, Iwamoto H, Yoshizawa T, et al. Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatr. 1999;67:86–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Nagai Y, Azuma T, Funauchi M, Fujita M, Umi M, Hirano M, et al. Clinical and molecular genetic study in seven Japanese families with spinocerebellar ataxia type 6. J Neurol Sci. 1998;157(1):52–9. Case Reports.PubMedCrossRefGoogle Scholar
  55. 55.
    Murata Y, Kawakami H, Yamaguchi S, Nishimura M, Kohriyama T, Ishizaki F, et al. Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol. 1998;55(10):1348–52. Comparative study research support, non-US Government.PubMedCrossRefGoogle Scholar
  56. 56.
    Ying S, Landman B, Chowdhury S, Sinofsky A, Gambini A, Mori S, et al. Orthogonal diffusion-weighted MRI measures distinguish region-specfic degeneration in cerebellar ataxia subtypes. J Neurol. 2009;256:1939–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Damak M, Riant F, Boukobza M, Tournier-Lasserve E, Bousser M-G, Vahedi K. Late onset hereditary episodic ataxia. J Neurol Neurosurg Psychiatr. 2009;80:566–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Harno H, Heikkinen S, Kaunisto MA, Kallela M, Hakkinen AM, Wessman M, et al. Decreased cerebellar total creatine in episodic ataxia type 2: a 1H MRS study. Neurology. 2005;64(3):542–4. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  59. 59.
    Sappey-Marinier D, Vighetto A, Peyron R, Broussolle E, Bonmartin A. Phosphorus and proton magnetic resonance spectroscopy in episodic ataxia type 2. Annal Neurol. 1999;46(2):256–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Bhidayasiri R, Perlman SL, Pulst SM, Geschwind DH. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol. 2005;62(12):1865–9. Comparative study research support, NIH, Extramural research support, non-US Government research support, US Government, Non-PHS.PubMedCrossRefGoogle Scholar
  61. 61.
    De Michele G, Di Salle F, Filla A, D’Alessio G, Ambrosio G, Viscardi L, et al. Magnetic resonance imaging in “typical” and “late onset” Friedreich’s disease and early onset cerebellar ataxia with retained tendon reflexes. Ital J Neurol Sci. 1995;16(5):303–8. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  62. 62.
    Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Annal Neurol. 1999;46(1):123–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Anheim M, Fleury M, Monga B, Laugel V, Chaigne D, Rodier G, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics. 2010;11(1):1–12. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  64. 64.
    Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F, et al. Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 2008;79(1):82–5. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  65. 65.
    Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology. 2011;53(5):367–72.PubMedCrossRefGoogle Scholar
  66. 66.
    Akhlaghi H, Corben L, Georgiou-Karistianis N, Bradshaw J, Storey E, Delatycki MB, et al. Superior cerebellar peduncle atrophy in Friedreich’s ataxia correlates with disease symptoms. Cerebellum. 2011;10(1):81–7. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  67. 67.
    Wessel K, Schroth G, Diener HC, Muller-Forell W, Dichgans J. Significance of MRI-confirmed atrophy of the cranial spinal cord in Friedreich's ataxia. Eur Arch Psychiatry Neurol Sci. 1989;238(4):225–30.Google Scholar
  68. 68.
    Franca Jr MC, D’Abreu A, Yasuda CL, Bonadia LC, Santos da Silva M, Nucci A, et al. A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol. 2009;256(7):1114–20. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  69. 69.
    Iltis I, Hutter D, Bushara KO, Clark HB, Gross M, Eberly LE, et al. (1)H MR spectroscopy in Friedreich’s ataxia and ataxia with oculomotor apraxia type 2. Brain Res. 2010;1358:200–10. Research support, NIH, Extramural.PubMedCrossRefGoogle Scholar
  70. 70.
    Fortuna F, Barboni P, Liguori R, Valentino ML, Savini G, Gellera C, et al. Visual system involvement in patients with Friedreich’s ataxia. Brain J Neurol. 2009;132(Pt 1):116–23. Research support, non-US Government.Google Scholar
  71. 71.
    Rizzo G, Tonon C, Valentino ML, Manners D, Fortuna F, Gellera C, et al. Brain diffusion-weighted imaging in Friedreich’s ataxia. Mov Disord. 2011;26(4):705–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Ciemins JJ, Horowitz AL. Abnormal white matter signal in ataxia telangiectasia. AJNR Am J Neuroradiol. 2000;21(8):1483–5. Case Reports.PubMedGoogle Scholar
  73. 73.
    Sardanelli F, Parodi RC, Ottonello C, Renzetti P, Saitta S, Lignana E, et al. Cranial MRI in ataxia-telangiectasia. Neuroradiology. 1995;37(1):77–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Tavani F, Zimmerman RA, Berry GT, Sullivan K, Gatti R, Bingham P. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI. Neuroradiology. 2003;45(5):315–9.PubMedGoogle Scholar
  75. 75.
    Wallis LI, Griffiths PD, Ritchie SJ, Romanowski CAJ, Darwent G, Wilkinson ID. Proton spectroscopy and imaging at 3T in ataxia-telangiectasia. AJNR Am J Neuroradiol. 2007;28(1):79–83. Research support, non-US Government.PubMedGoogle Scholar
  76. 76.
    Habek M, Brinar VV, Rados M, Zadro I, Zarkovic K. Brain MRI abnormalities in ataxia-telangiectasia. Neurologist. 2008;14(3):192–5. Case Reports.PubMedCrossRefGoogle Scholar
  77. 77.
    Le Ber I, Moreira M-C, Rivaud-Pechoux S, Chamayou C, Ochsner F, Kuntzer T, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain. 2003;126(Pt 12):2761–72. Case reports research support, non-US Government.PubMedCrossRefGoogle Scholar
  78. 78.
    Sekijima H, Ohara S, Nakagawa S, Tabata K, Yoshida K, Ishigame H. Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): clinical and neuropathological features of a Japanese family. J Neurol Sci. 1998;158:30–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain J Neurol. 2009;132(Pt 10):2688–98. Research support, non-US Government.CrossRefGoogle Scholar
  80. 80.
    Criscuolo C, Chessa L, Di Giandomenico S, Mancini P, Sacca F, Grieco GS, et al. Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study. Neurology. 2006;66(8):1207–10. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  81. 81.
    Iltis I, Hutter D, Bushara KO, Clark HB, Gross M, Eberly LE, et al. (1)H MR spectroscopy in Friedreich's ataxia and ataxia with oculomotor apraxia type 2. Brain Res. 2010;1358:200–10 (Research support, NIH, Extramural).Google Scholar
  82. 82.
    Embirucu EK, Otaduy MC, Taneja AK, Leite CC, Kok F, Lucato LT. MR spectroscopy detects lipid peaks in cerebrotendinous xanthomatosis. AJNR Am J Neuroradiol. 2010;31(7):1347–9. Case Reports.PubMedCrossRefGoogle Scholar
  83. 83.
    Pilo de la Fuente B, Ruiz I, Lopez de Munain A, Jimenez-Escrig A. Cerebrotendinous xanthomatosis: neuropathological findings. J Neurol. 2008;255(6):839–42. Case Reports.PubMedCrossRefGoogle Scholar
  84. 84.
    Sevin M, Lesca G, Baumann N, Millat G, Lyon-Caen O, Vanier MT, et al. The adult form of Niemann–Pick disease type C. Brain J Neurol. 2007;130(Pt 1):120–33. Case reports research support, non-US Government review.Google Scholar
  85. 85.
    Tedeschi G, Bonavita S, Barton NW, Betolino A, Frank JA, Patronas NJ, et al. Proton magnetic resonance spectroscopic imaging in the clinical evaluation of patients with Niemann-Pick type C disease. J Neurol Neurosurg Psychiatry. 1998;65(1):72–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Battisti C, Tarugi P, Dotti MT, De Stefano N, Vattimo A, Chierichetti F, et al. Adult onset Niemann-Pick type C disease: A clinical, neuroimaging and molecular genetic study. Mov Disord. 2003;18(11):1405–9. Case reports research support, non-US Government.PubMedCrossRefGoogle Scholar
  87. 87.
    Rapin I, Weidenheim K, Lindenbaum Y, Rosenbaum P, Merchant SN, Krishna S, et al. Cockayne syndrome in adults: review with clinical and pathologic study of a new case. J Child Neurol. 2006;21(11):991–1006. Case Reports Review.PubMedCrossRefGoogle Scholar
  88. 88.
    Adachi M, Kawanami T, Ohshima F, Hosoya T. MR findings of cerebral white matter in Cockayne syndrome. Magn Reson Med Sci. 2006;5(1):41–5. Case Reports.PubMedCrossRefGoogle Scholar
  89. 89.
    Weidenheim KM, Dickson DW, Rapin I. Neuropathology of Cockayne syndrome: evidence for impaired development, premature aging, and neurodegeneration. Mech Ageing Dev. 2009;130(9):619–36. Case Reports Review.PubMedCrossRefGoogle Scholar
  90. 90.
    Cheon JE, Kim IO, Hwang YS, Kim KJ, Wang KC, Cho BK, et al. Leukodystrophy in children: a pictorial review of MR imaging features. Radiographics. 2002;22(3):461–76. Review.PubMedGoogle Scholar
  91. 91.
    Hund E, Grau A, Fogel W, Forsting M, Cantz M, Kustermann-Kuhn B, et al. Progressive cerebellar ataxia, proximal neurogenic weakness and ocular motor disturbances: hexosaminidase A deficiency with late clinical onset in four siblings. J Neurol Sci. 1997;145(1):25–31. Case Reports.PubMedCrossRefGoogle Scholar
  92. 92.
    Seminara SB, Acierno Jr JS, Abdulwahid NA, Crowley Jr WF, Margolin DH. Hypogonadotropic hypogonadism and cerebellar ataxia: detailed phenotypic characterization of a large, extended kindred. J Clin Endocrinol Metab. 2002;87(4):1607–12. Case reports research support, US Government, PHS.PubMedCrossRefGoogle Scholar
  93. 93.
    Harding AE. “Idiopathic” late onset cerebellar ataxia. A clinical and genetic study of 36 cases. J Neurol Sci. 1981;51(2):259–71. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  94. 94.
    Fok AC, Wong MC, Cheah JS. Syndrome of cerebellar ataxia and hypogonadotrophic hypogonadism: evidence for pituitary gonadotrophin deficiency. J Neurol Neurosurg Psychiatry. 1989;52(3):407–9. Case Reports.PubMedCrossRefGoogle Scholar
  95. 95.
    Ito S, Shirai W, Asahina M, Hattori T. Clinical and brain MR imaging features focusing on the brain stem and cerebellum in patients with myoclonic epilepsy with ragged-red fibers due to mitochondrial A8344G mutation. AJNR Am J Neuroradiol. 2008;29(2):392–5. Case Reports.PubMedCrossRefGoogle Scholar
  96. 96.
    Mathews PM, Andermann F, Silver K, Karpati G, Arnold DL. Proton MR spectroscopic characterization of differences in regional brain metabolic abnormalities in mitochondrial encephalomyopathies. Neurology. 1993;43(12):2484–90. Research support, non-US Government, research support, US Government, PHS.PubMedCrossRefGoogle Scholar
  97. 97.
    Takeda S, Wakabayashi K, Ohama E, Ikuta F. Neuropathology of myoclonus epilepsy associated with ragged-red fibers (Fukuhara’s disease). Acta Neuropathol. 1988;75(5):433–40. Case reports research support, non-US Government.PubMedCrossRefGoogle Scholar
  98. 98.
    Herrero-Martin MD, Ayuso T, Tunon MT, Martin MA, Ruiz-Pesini E, Montoya J. A MELAS/MERRF phenotype associated with the mitochondrial DNA 5521G > A mutation. J Neurol Neurosurg Psychiatry. 2010;81(4):471–2. Case Reports Letter.PubMedCrossRefGoogle Scholar
  99. 99.
    Lodi R, Montagna P, Iotti S, Zaniol P, Barboni P, Puddu P, et al. Brain and muscle energy metabolism studied in vivo by 31P-magnetic resonance spectroscopy in NARP syndrome. J Neurol Neurosurg Psychiatr. 1994;57(12):1492–6 (Case reports clinical trial research support, non-US Government).Google Scholar
  100. 100.
    Tzoulis C, Neckelmann G, Mork SJ, Engelsen BE, Viscomi C, Moen G, et al. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes. Brain J Neurol. 2010;133(Pt 5):1428–37. Comparative study research support, non-US Government.CrossRefGoogle Scholar
  101. 101.
    Hashimoto R-I, Javan AK, Tassone F, Hagerman RJ, Rivera SM. A voxel-based morphometry study of grey matter loss in fragile X-associated tremor/ataxia syndrome. Brain. 2011;134(Pt 3):863–78. Research support, NIH, Extramural research support, non-US Government.PubMedCrossRefGoogle Scholar
  102. 102.
    Brunberg JA, Jacquemont S, Hagerman RJ, Berry-Kravis EM, Grigsby J, Leehey MA, et al. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol. 2002;23(10):1757–66. Comparative study evaluation studies research support, non-US Government, research support, US Government, PHS.PubMedGoogle Scholar
  103. 103.
    Ginestroni A, Guerrini L, Della Nave R, Tessa C, Cellini E, Dotti MT, et al. Morphometry and 1H-MR spectroscopy of the brain stem and cerebellum in three patients with fragile X-associated tremor/ataxia syndrome. AJNR Am J Neuroradiol. 2007;28(3):486–8. Case reports research support, non-US Government.PubMedGoogle Scholar
  104. 104.
    Sarac H, Henigsberg N, Markeljevic J, Pavlisa G, Hof PR, Simic G. Fragile X-premutation tremor/ataxia syndrome (FXTAS) in a young woman: clinical, genetics, MRI and 1H-MR spectroscopy correlates. Collegium Antropologicum. 2011;35 Suppl 1:327–32. Case Reports.PubMedGoogle Scholar
  105. 105.
    Klockgether T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol. 2010;9:94–104.PubMedCrossRefGoogle Scholar
  106. 106.
    Chu K, Kang DW, Kim HJ, Lee YS, Park SH. Diffusion-weighted imaging abnormalities in wernicke encephalopathy: reversible cytotoxic edema? Arch Neurol. 2002;59(1):123–7. Case reports research support, non-US Government.PubMedCrossRefGoogle Scholar
  107. 107.
    Yokota O, Tsuchiya K, Terada S, Oshima K, Ishizu H, Matsushita M, et al. Frequency and clinicopathological characteristics of alcoholic cerebellar degeneration in Japan: a cross-sectional study of 1,509 postmortems. Acta Neuropathol. 2006;112(1):43–51. Comparative study research support, non-US Government.PubMedCrossRefGoogle Scholar
  108. 108.
    Hillbom M, Muuronen A, Holm L, Hindmarsh T. The clinical versus radiological diagnosis of alcoholic cerebellar degeneration. J Neurol Sci. 1986;73(1):45–53. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  109. 109.
    Anderson CM, Rabi K, Lukas SE, Teicher MH. Cerebellar lingula size and experiential risk factors associated with high levels of alcohol and drug use in young adults. Cerebellum. 2010;9(2):198–209. Research support, NIH, Extramural.PubMedCrossRefGoogle Scholar
  110. 110.
    Maschke M, Weber J, Bonnet U, Dimitrova A, Bohrenkamper J, Sturm S, et al. Vermal atrophy of alcoholics correlate with serum thiamine levels but not with dentate iron concentrations as estimated by MRI. J Neurol 2005;252(6):704–11 (comparative study research support, non-US Government)Google Scholar
  111. 111.
    Hommer D, Momenan R, Kaiser E, Rawlings R. Evidence for a gender-related effect of alcoholism on brain volumes. Am J Psychiatry. 2001;158(2):198–204. Research support, US Government, PHS.PubMedCrossRefGoogle Scholar
  112. 112.
    Bartsch AJ, Homola G, Biller A, Smith SM, Weijers HG, Wiesbeck GA, et al. Manifestations of early brain recovery associated with abstinence from alcoholism. Brain J Neurol. 2007;130(Pt 1):36–47.Google Scholar
  113. 113.
    Adalsteinsson E, Sullivan EV, Mayer D, Pfefferbaum A. In vivo quantification of ethanol kinetics in rat brain. Neuropsychopharmacol. 2006;31(12):2683–91. Research support, NIH, Extramural].CrossRefGoogle Scholar
  114. 114.
    Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci. 1989;94(1–3):79–100.PubMedCrossRefGoogle Scholar
  115. 115.
    Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–6. Consensus Development Conference research support, NIH, Extramural research support, Non-US Government.PubMedCrossRefGoogle Scholar
  116. 116.
    Brenneis C, Boesch S, Egger K, Seppi K, Scherfler C, Schocke M, et al. Cortical atrophy in the cerebellar variant of multiple atrophy: a voxel based morphometry study. Mov Disord. 2006;21(2):159–65.PubMedCrossRefGoogle Scholar
  117. 117.
    Nanri K, Koizumi K, Mitoma H, Taguchi T, Takeguchi M, Ishiko T, et al. Classification of cerebellar atrophy using voxel-based morphometry and SPECT with an easy Z-score imaging system. Intern Med. 2010;49(6):535–41. Evaluation Studies.PubMedCrossRefGoogle Scholar
  118. 118.
    Brenneis C, Seppi K, Schocke MF, Muller J, Luginger E, Bosch S, et al. Voxel-based morphometry detects cortical atrophy in the Parkinson variant of multiple system atrophy. Mov Disord. 2003;18(10):1132–8. Comparative Study.PubMedCrossRefGoogle Scholar
  119. 119.
    Burk K, Globas C, Wahl T, Buhring U, Dietz K, Zuhlke C, et al. MRI-based volumetric differentiation of sporadic cerebellar ataxia. Brain J Neurol. 2004;127(Pt 1):175–81.CrossRefGoogle Scholar
  120. 120.
    Watanabe H, Fukatsu H, Katsuno M, Sugiura M, Hamada K, Okada Y, et al. Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol Neurosurg Psychiatry. 2004;75(1):103–9. Clinical Trial.PubMedGoogle Scholar
  121. 121.
    da Rocha AJ, Maia Jr AC, da Silva CJ, Braga FT, Ferreira NP, Barsottini OG, et al. Pyramidal tract degeneration in multiple system atrophy: the relevance of magnetization transfer imaging. Mov Disord. 2007;22(2):238–44.PubMedCrossRefGoogle Scholar
  122. 122.
    Kitamura K, Nakayama K, Kosaka S, Yamada E, Shimada H, Miki T, et al. Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease. Neuroradiology. 2008;50(4):285–92. Controlled Clinical Trial.PubMedCrossRefGoogle Scholar
  123. 123.
    Blain CR, Barker GJ, Jarosz JM, Coyle NA, Landau S, Brown RG, et al. Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology. 2006;67(12):2199–205. Comparative study research support, non-US Government.PubMedCrossRefGoogle Scholar
  124. 124.
    Shiga K, Yamada K, Yoshikawa K, Mizuno T, Nishimura T, Nakagawa M. Local tissue anisotropy decreases in cerebellopetal fibers and pyramidal tract in multiple system atrophy. J Neurol. 2005;252(5):589–96. Comparative study research support, non-US Government.PubMedCrossRefGoogle Scholar
  125. 125.
    De Marcos FA, Ghizoni E, Kobayashi E, Li LM, Cendes F. Cerebellar volume and long-term use of phenytoin. Seizure J Br Epilepsy Assoc. 2003;12(5):312–5. Comparative study research support, non-US Government.CrossRefGoogle Scholar
  126. 126.
    Braun J, Seyfert S, Bernarding J, Schilling A, Marx P, Tolxdorff T. Volume-selective proton MR spectroscopy for in-vitro quantification of anticonvulsants. Neuroradiology. 2001;43:211–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Uchino A, Aibe H, Itoh H, Aiko Y, Tanaka M. Superficial siderosis of the central nervous system. Its MRI manifestations. Clin Imaging. 1997;21:241–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Rees JH. Paraneoplastic cerebellar degeneration: new insights into imaging and immunology. J Neurol Neurosurg Psychiatry. 2006;77(4):427. Comment Editorial.PubMedCrossRefGoogle Scholar
  129. 129.
    Wilkinson I, Hadjivassiliou M, Dickson J, Wallis L, Grunewald R, Coley S, et al. Cerebellar abnormalities on proton MR spectroscopy in gluten ataxia. J Neurol Neurosurg Psychiatry. 2005;76:1011–3.PubMedCrossRefGoogle Scholar
  130. 130.
    Maheshwari S, Fatterpekar G, Castillo M, Mukherji S. Proton MR spectroscopy of the brain. Semin Ultrasound CT MR. 2000;21:434–51.PubMedCrossRefGoogle Scholar
  131. 131.
    Wolinsky J, Narayana P. Magnetic resonance spectroscopy in multiple sclerosis: window into the diseased brain. Curr Opin Neurol. 2002;15:247–51.PubMedCrossRefGoogle Scholar
  132. 132.
    Gilmore CP, Elliott I, Auer D, Maddison P. Diffuse cerebellar MR imaging changes in anti-Yo positive paraneoplastic cerebellar degeneration. J Neurol. 2010;257(3):490–1. Case Reports Letter].PubMedCrossRefGoogle Scholar
  133. 133.
    Marsh M. The natural history of gluten sensitivity: defining, refining and re-defining. Q J Med. 1995;85:9–13.Google Scholar
  134. 134.
    Hadjivassiliou M, Sanders D, Grunewald R, Woodroofe N, Boscolo S, Aeschlimann D. Gluten sensitivity: from gut to brain. Lancet Neurol. 2010;9:318–30.PubMedCrossRefGoogle Scholar
  135. 135.
    Burk K, Bosch S, Muller CA, Melms A, Zuhlke C, Stern M, et al. Sporadic cerebellar ataxia associated with gluten sensitivity. Brain J Neurol. 2001;124(Pt 5):1013–9. Review.CrossRefGoogle Scholar
  136. 136.
    Hadjivassiliou M, Wallis LI, Hoggard N, Grunewald RA, Griffiths PD, Wilkinson ID. MR spectroscopy and atrophy in Gluten, Friedreich’s and SCA6 ataxias. Acta Neurol Scand. 2012;126:138–43.Google Scholar
  137. 137.
    De Bruecker Y, Claus F, Demaerel P, Ballaux F, Sciot R, Lagae L, et al. MRI findings in acute cerebellitis. Eur Radiol. 2004;18(8):1478–83.Google Scholar
  138. 138.
    Hadjivassiliou M, Boscolo S, Tongiorgi E, Grunewald RA, Sharrack B, Sanders DS, et al. Cerebellar ataxia as a possible organ-specific autoimmune disease. Mov Disord. 2008;23(10):1370–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Honnorat J, Saiz A, Giometto B, Vincent A, Brieva L, de Andres C, et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol. 2001;58(2):225–30. Clinical trial research support, non-US Government.PubMedCrossRefGoogle Scholar
  140. 140.
    Ashburner J, Friston KJ. Why voxel-based morphometry should be used. Neuroimage. 2001;14(6):1238–43. Comment research support, non-US Government.PubMedCrossRefGoogle Scholar
  141. 141.
    Ewers M, Teipel SJ, Dietrich O, Schonberg SO, Jessen F, Heun R, et al. Multicenter assessment of reliability of cranial MRI. Neurobiol Aging. 2006;27(8):1051–9. Multicenter study research support, non-US Government.PubMedCrossRefGoogle Scholar
  142. 142.
    Pardoe H, Pell GS, Abbott DF, Berg AT, Jackson GD. Multi-site voxel-based morphometry: methods and a feasibility demonstration with childhood absence epilepsy. Neuroimage. 2008;42(2):611–6. Multicenter study research support, NIH, Extramural research support, Non-US Government.PubMedCrossRefGoogle Scholar
  143. 143.
    Stevanin G, Herman A, Brice A, Durr A. Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology. 1999;53(6):1355–7. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  144. 144.
    Kreuz FR, Grunewald T, Muller A, Reichmann H, Zuhlke C. Spinocerebellar ataxia type 7: frequency of CAG repeat length in a German family. J Neurol. 1999;246(11):1105–6. doi: 11. Case Reports Letter.PubMedCrossRefGoogle Scholar
  145. 145.
    Jobsis G, Weber J, Barth P, Keizers H, Baas F, van Schooneveld M, et al. Autosomal dominant cerebellar ataxia with retinal degeneration (ADCA II): clinical and neuropathological findings in two pedegrees and genetic linkage to 3p12-p21.1. Journal of Neurology Neurosurgery and. Psychiatry. 1997;62:367–71.Google Scholar
  146. 146.
    Bang OY, Lee PH, Kim SY, Kim HJ, Huh K. Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry. 2004;75(10):1452–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Alcauter S, Barrios FA, Diaz R, Fernandez-Ruiz J. Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. Neuroimage. 2011;55(1):1–7 (Research support, non-US Government).Google Scholar
  148. 148.
    Day JW, Schut LJ, Moseley ML, Durand AC, Ranum LP. Spinocerebellar ataxia type 8: clinical features in a large family. Neurology. 2000;55(5):649–57. Research support, non-US Government research support, US Government, PHS.PubMedCrossRefGoogle Scholar
  149. 149.
    Ikeda Y, Shizuka-Ikeda M, Watanabe M, Schmitt M, Okamoto K, Shoji M. Asymptomatic CTG expansion at the SCA8 locus is associated with cerebellar atrophy on MRI. J Neurol Sci. 2000;182(1):76–9. Case Reports.PubMedCrossRefGoogle Scholar
  150. 150.
    Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology. 2000;54(4):950–5.PubMedCrossRefGoogle Scholar
  151. 151.
    Torrens L, Burns E, Stone J, Graham C, Wright H, Summers D, et al. Spinocerebellar ataxia type 8 in Scotland: frequency, neurological, neuropsychological and neuropsychiatric findings. Acta Neurol Scand. 2008;117(1):41–8. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  152. 152.
    Kumar N, Miller GM. White matter hyperintense lesions in genetically proven spinocerebellar ataxia 8. Clin Neurol Neurosurg. 2008;110(1):65–8. Case Reports.PubMedCrossRefGoogle Scholar
  153. 153.
    Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Annal Neurol. 2001;50(2):234–9. Research support, non-US Government research support, US Government, PHS.PubMedCrossRefGoogle Scholar
  154. 154.
    Grewal RP, Achari M, Matsuura T, Durazo A, Tayag E, Zu L, et al. Clinical features and ATTCT repeat expansion in spinocerebellar ataxia type 10. Arch Neurol. 2002;59(8):1285–90. Research support, non-US Government research support, US Government, PHS.PubMedCrossRefGoogle Scholar
  155. 155.
    Srivastava A, Choudhry S, Gopinath M, Roy S, Tripathi M, Brahmachari S, et al. Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Annal Neurol. 2001;50:796–800.PubMedCrossRefGoogle Scholar
  156. 156.
    Brussino A, Graziano C, Giobbe D, Ferrone M, Dragone E, Arduino C, et al. Spinocerebellar ataxia type 12 identified in two Italian families may mimic sporadic ataxia. Mov Disord. 2010;25(9):1269–73. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  157. 157.
    van de Warrenburg BPC, Verbeek DS, Piersma SJ, Hennekam FAM, Pearson PL, Knoers NVAM, et al. Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology. 2003;61(12):1760–5. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  158. 158.
    Novak MJU, Sweeney MG, Li A, Treacy C, Chandrashekar HS, Giunti P, et al. An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. Mov Disord. 2010;25(13):2176–82. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  159. 159.
    Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, et al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology. 2001;57(1):96–100. Case Reports.PubMedCrossRefGoogle Scholar
  160. 160.
    Kanai K, Sakakibara R, Uchiyama T, Liu Z, Yamamoto T, Ito T, et al. Sporadic case of spinocerebellar ataxia type 17: treatment observations for managing urinary and psychotic symptoms. Mov Disord. 2007;22(3):441–3. Letter research support, non-US Government.PubMedCrossRefGoogle Scholar
  161. 161.
    Loy CT, Sweeney MG, Davis MB, Wills AJ, Sawle GV, Lees AJ, et al. Spinocerebellar ataxia type 17: extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord. 2005;20(11):1521–3. Case Reports.PubMedCrossRefGoogle Scholar
  162. 162.
    Watanabe M, Monai N, Jackson M, Yamamoto-Watanabe Y, Ikeda Y, Suzuki C, et al. A small trinucleotide expansion in the TBP gene gives rise to a sporadic case of SCA17 with abnormal putaminal findings on MRI. Intern Med. 2008;47:2179–82.PubMedCrossRefGoogle Scholar
  163. 163.
    De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, et al. Dementia, ataxia, extrapyramidal features, and epilepsy: phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci. 2003;24(3):166–7. Comparative Study.PubMedCrossRefGoogle Scholar
  164. 164.
    Mariotti C, Alpini D, Fancellu R, Soliveri P, Grisoli M, Ravaglia S, et al. Spinocerebellar ataxia type 17 (SCA17): oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol. 2007;254(11):1538–46. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  165. 165.
    Reetz K, Lencer R, Hagenah JM, Gaser C, Tadic V, Walter U, et al. Structural changes associated with progression of motor deficits in spinocerebellar ataxia 17. Cerebellum. 2010;9(2):210–7. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  166. 166.
    Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Annal Neurol. 2003;54(3):367–75. Research support, non-US Government research support, US Government, Non-PHS.PubMedCrossRefGoogle Scholar
  167. 167.
    Reetz K, Kleiman A, Klein C, Lencer R, Zuehlke C, Brockmann K, et al. CAG repeats determine brain atrophy in spinocerebellar ataxia 17: a VBM study. PLoS ONE 2011;6(1):e15125 [erratum appears in PLoS One. 2011;6(1). doi:  10.1371/annotation/e30b739b-114e-445a-b07b-7e2a8efa2668] (Research support, non-US Government].
  168. 168.
    Knight MA, Gardner RJM, Bahlo M, Matsuura T, Dixon JA, Forrest SM, et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain. 2004;127(Pt 5):1172–81. Research support, non-US Government.PubMedCrossRefGoogle Scholar
  169. 169.
    Chung M-Y, Lu Y-C, Cheng N-C, Soong B-W. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003;126(Pt 6):1293–9. Research support, non-US Government.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stuart Currie
    • 1
  • Marios Hadjivassiliou
    • 2
  • Ian J Craven
    • 1
  • Iain D Wilkinson
    • 1
  • Paul D Griffiths
    • 1
  • Nigel Hoggard
    • 1
  1. 1.Academic Unit of RadiologySheffieldUK
  2. 2.Department of NeurologySheffieldUK

Personalised recommendations