The Cerebellum

, Volume 11, Issue 2, pp 311–313

Functional Imaging and the Cerebellum: Recent Developments and Challenges. Editorial



Recent neuroimaging developments allow a better in vivo characterization of the structural and functional connectivity of the human cerebellum. Ultrahigh fields, which considerably increase spatial resolution, enable to visualize deep cerebellar nuclei and cerebello-cortical sublayers. Tractography reconstructs afferent and efferent pathway of the cerebellum. Resting-state functional connectivity individualizes the prewired, parallel close-looped sensorimotor, cognitive, and affective networks passing through the cerebellum. These results are un agreement with activation maps obtained during stimulation functional neuroimaging or inferred from neurological deficits due to cerebellar lesions. Therefore, neuroimaging supports the hypothesis that cerebellum constitutes a general modulator involved in optimizing mental performance and computing internal models. However, the great challenges will remain to unravel: (1) the functional role of red and bulbar olivary nuclei, (2) the information processing in the cerebellar microcircuitry, and (3) the abstract computation performed by the cerebellum and shared by sensorimotor, cognitive, and affective domains.


Cerebellum Functional imaging Tractography Brain resting-state Cognition Internal models Ultrahigh fields 


  1. 1.
    Middleton FA, Strick PL. Dendate output channels: motor and cognitive components. Prog Brain Res. 1997;114:555–68.Google Scholar
  2. 2.
    Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projection to the cerebral cortex. J Neurophysiol. 2003;89:634–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. Internat Rev of Neurobiol. 1997;41:31–60.CrossRefGoogle Scholar
  4. 4.
    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRefGoogle Scholar
  5. 5.
    Schmahmann JD, Shermann JC. The cerebellar cognitive and affective syndrome. Brain. 1998;121:561–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt5):1051–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Küper M, Thürling M, Maderwald S, Ladd ME, Timmann D. Structural and Functional Magnetic Resonance Imaging of the Human Cerebellar Nuclei. Cerebellum 2012. doi:10.1007/s12311-010-0194-5.
  8. 8.
    Marques JP, Gruetter R, van der Zwaag W. In vivo Structural Imaging of the Cerebellum, the Contribution of Ultra-High Fields. Cerebellum 2012. doi:10.1007/s12311-010-0189-2.
  9. 9.
    Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI. Magn Res Med. 2000;44:625–32.CrossRefGoogle Scholar
  10. 10.
    Ramnani N. Frontal Lobe and Posterior Parietal Contributions to the Cortico-cerebellar System. Cerebellum 2012. doi:10.1007/s12311-011-0272-3.
  11. 11.
    Stoodley CJ. The Cerebellum and Cognition: Evidence from Functional Imaging Studies. Cerebellum 2012. doi:10.1007/s12311-011-0260-7.
  12. 12.
    Fox PT, Raichle ME, Thach T. Functional mapping of the human cerebellum with positron emission tomography. Proc Natl Acad Sci USA. 1985;82:7462–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Ellerman JM, Flament D, Kim SG, Fu QG, Merkle H, Ebner TJ, Ugurbil K. Spatial patterns of functional activation of the cerebellum investigated using high field (4 T) MRI. NMR Biomed. 1994;7:63–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Voogd J, Caroline K. L. Schraa-Tam CKL,. van der Geest JN, De Zeeuw CI. Visuomotor Cerebellum in Human and Nonhuman Primates. Cerebellum 2012. doi:10.1007/s12311-010-0204-7.
  15. 15.
    Grimadi G, Manto M. Topography of Cerebellar Deficits in Humans. Cerebellum 2012. doi:10.1007/s12311-011-0247-4.
  16. 16.
    Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Neurosci. 1998;2:338–247.CrossRefGoogle Scholar
  17. 17.
    Hiroshi Imamizu H, Kawato M. Cerebellar Internal Models: Implications for the Dexterous Use of Tools. Cerebellum 2012. doi:10.1007/s12311-010-0241-2.
  18. 18.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioural control. Cerebellum. 2009;8:399–402.PubMedCrossRefGoogle Scholar
  20. 20.
    Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Zheng N, Raman IM. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum. 2010;9:56–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Habas C, Guillevin R, Abanou A. In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review. Cerebellum. 2010;9(2):167–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Dean P, Porrill J, Ekerot C-F, Jörntell H. The cerebellar microcircuit as an adaptative filter: experimental and computational evidence. Nature Rev Neurosci, 2010;11:30-43.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Service de NeuroImagerie, CHNO des XV-XXParisFrance

Personalised recommendations