The Cerebellum

, Volume 11, Issue 1, pp 1–4 | Cite as

Diversity and Complexity of Roles of Granule Cells in the Cerebellar Cortex. Editorial

  • Mario Manto
  • Chris I. De Zeeuw


The cerebellar granule cell, the most numerous neurons in the brain, forms the main excitatory neuron of the cerebellar cortical circuitry. Granule cells are synaptically connected with both mossy fibers and Golgi cells inside specialized structures called glomeruli, and thereby, they are subject to both feed-forward and feed-back inhibition. Their unique architecture with about four dendrites and a single axon ascending in the cerebellar cortex to bifurcate into two parallel fibers making synapses with Purkinje neurons has attracted numerous scientists. Recent advances show that they are much more than just relays of mossy fibers. They perform diverse and complex transformations in the spatiotemporal domain. This special issue highlights novel avenues in our understanding of the roles of this key neuronal population of the cerebellar cortex, ranging from developmental up to physiological and pathological points of view.


Nitric Oxide Granule Cell Cerebellar Cortex Mossy Fiber Cerebellar Granule Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Herculano-Houzel S, Lent R. Isotropic fractionator: a simple, rapid method for the quantification of total cell numbers in the brain. J Neurosci. 2005;25:2518–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Mugnaini E, Sekerkova G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev. 2011;66(1–2):220–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Ramon y Cajal S. Sur l’origine et la direction des prolongations nerveuses de la couche moléculaire du cervelet. Internat Mschr Anat Physiol. 1889;7:12–31.Google Scholar
  4. 4.
    D’Angelo E. Cerebellar granule cells. In: Manto M, Gruol D, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Berlin: Springer; 2012.Google Scholar
  5. 5.
    Seja P, Schonewille M, Spitzmaul G, Badura A, Klein I, Rudhard Y, Wisden W, Hübner CA, De Zeeuw CI, Jentsch TJ. Raising cytosolic Cl(-) in cerebellar granule cells affects their excitability and vestibulo-ocular learning. EMBO J. 2012;doi: 10.1038/emboj.2011.488.
  6. 6.
    Hamori J, Somogyi J. Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol. 1983;220:365–77.PubMedCrossRefGoogle Scholar
  7. 7.
    D’Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Eccles JC, Ito M, Szentagothai J. The cerebellum as a neural machine. Berlin: Springer; 1967.Google Scholar
  9. 9.
    Kistler WM, De Zeeuw CI. Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum. 2003;2:44–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Canterini S, Bosco A, Carletti V, Fuso A, Curci A, Mangia F, Fiorenza MT. Subcellular TSC22D4 localization in cerebellum granule neurons of the mouse depends on development and differentiation. Cerebellum. 2012; in press.Google Scholar
  11. 11.
    Kilpatrick DL, Wang W, Gronostajski R, Litwack ED. Nuclear factor I and cerebellar granule neuron development: an intrinsic-extrinsic interplay. Cerebellum. 2012; in press.Google Scholar
  12. 12.
    Contestabile A. Role of nitric oxide in cerebellar development and function: focus on granule neurons. Cerebellum. 2012; in press.Google Scholar
  13. 13.
    Courjaret R, Miras-Portugal MT, Deitmer JW. Purinergic modulation of granule cells. Cerebellum. 2012; in press.Google Scholar
  14. 14.
    Hirano T. Glutamate-receptor-like molecule GluRdelta2 involved in synapse formation at parallel fiber-Purkinje neuron synapses. Cerebellum. 2012; in press.Google Scholar
  15. 15.
    Matsuda K, Yuzaki M. Cbln1 and the Delta2 glutamate receptor—an orphan ligand and an orphan receptor find their partners. Cerebellum. 2012; in press.Google Scholar
  16. 16.
    Saftenku EE. Models of calcium dynamics in cerebellar granule cells. Cerebellum. 2012. In press.Google Scholar
  17. 17.
    Saftenku EE. Effects of calretinin on Ca(2+) signals in cerebellar granule cells: implications of cooperative Ca(2+) binding. Cerebellum. 2012; in press.Google Scholar
  18. 18.
    Zhang W, Linden DJ. Calcium influx measured at single presynaptic boutons of cerebellar granule cell ascending axons and parallel fibers. Cerebellum. 2012; in press.Google Scholar
  19. 19.
    Strackx E, Gantert M, Moers V, van Kooten IA, Rieke R, Hürter H, Lemmens MA, Steinbusch HW, Zimmermann LJ, Vles JS, Garnier Y, Gavilanes AW, Kramer BW. Increased number of cerebellar granule cells and astrocytes in the internal granule layer in sheep following prenatal intra-amniotic injection of lipopolysaccharide. Cerebellum. 2012; in press.Google Scholar
  20. 20.
    Luo J. Mechanisms of ethanol-induced death of cerebellar granule cells. Cerebellum. 2012; in press.Google Scholar
  21. 21.
    Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009;21:92–103.PubMedCrossRefGoogle Scholar
  22. 22.
    Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, et al. Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol. 2003;163(2):295–302.PubMedCrossRefGoogle Scholar
  23. 23.
    Brockhaus J, Dressel D, Herold S, Deitmer JW. Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur J Neurosci. 2004;19(8):2221–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Dar MS, Mustafa SJ. Acute ethanol/cannabinoid-induced ataxia and its antagonism by oral/systemic/intracerebellar A1 adenosine receptor antisense in mice. Brain Res. 2002;957(1):53–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell. 1995;81(2):245–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Kato A, Yoshida T, Himeshima Y, Mishina M, Hirano T. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate delta2 subunit or Purkinje cells. Eur J Neurosci. 2005;21(5):1315–26.CrossRefGoogle Scholar
  27. 27.
    Lalouette A, Lohof A, Sotelo C, Guénet J, Mariani J. Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience. 2001;105(2):443–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Le Guen MC, De Zeeuw CI. Presynaptic plasticity at cerebellar parallel fiber terminals. Funct Neurol. 2010;25(3):141–51.PubMedGoogle Scholar
  29. 29.
    Lahra MM, Jeffery HE. A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstet Gynecol. 2004;190(1):147–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Gilles FH, Averill Jr DR, Kerr CS. Neonatal endotoxin encephalopathy. Ann Neurol. 1977;2(1):49–56.PubMedCrossRefGoogle Scholar
  31. 31.
    Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum. 2010;9(4):499–529.PubMedCrossRefGoogle Scholar
  32. 32.
    Manto M. Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambride University Press; 2010.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.FNRS-Neurologie, Unité d’Etude du MouvementBruxellesBelgium
  2. 2.Department of NeuroscienceErasmus MCRotterdamThe Netherlands
  3. 3.Netherlands Institute for NeuroscienceRoyal Dutch Academy of Arts & Sciences (KNAW)AmsterdamThe Netherlands

Personalised recommendations