The Cerebellum

, Volume 11, Issue 4, pp 834–844 | Cite as

Cognition in Friedreich Ataxia

  • Antonieta Nieto
  • Rut Correia
  • Erika de Nóbrega
  • Fernando Montón
  • Stephany Hess
  • Jose Barroso
Original Paper


Friedreich ataxia (FRDA) is the most frequent of the inherited ataxias. However, very few studies have examined the cognitive status of patients with genetically defined FRDA. Our aim was to study cognitive performance of FRDA patients taking into account the motor problems characteristic of this clinical population. Thirty-six FRDA patients were administered a comprehensive neuropsychological battery measuring multiple domains: processing speed, attention, working memory, executive functions, verbal and visual memory, visuoperceptive and visuospatial skills, visuoconstructive functions, and language. Thirty-one gender, age, years of education, and estimated IQ-matched healthy participants served as control subjects. All participants were native Spanish speakers. Patients showed decreased motor and mental speed, problems in conceptual thinking, a diminished verbal fluency, deficits in acquisition of verbal information and use of semantic strategies in retrieval, visuoperceptive and visuoconstructive problems, and poor action naming. Scores on the depression inventory were significantly higher in patients than controls, but depression did not account for group differences in cognitive performance. The observed pattern of neuropsychological impairment is indicative of executive problems and parieto-temporal dysfunction. Neuropathological and neuroimaging studies with FRDA patients have reported only mild anomalies in cerebral hemispheres. Thus, cognitive impairment in FRDA is probably caused by the interruption of the cerebro-cerebellar circuits that have been proposed as the anatomical substrate of the cerebellar involvement in cognition.


Cerebellum Cognition Friedreich ataxia Neuropsychology 

Supplementary material

12311_2012_363_MOESM1_ESM.doc (77 kb)
ESM 1(DOC 77 kb)


  1. 1.
    Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.PubMedCrossRefGoogle Scholar
  2. 2.
    Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Wollmann T, Barroso J, Monton FI, Nieto A. Neuropsychological test performance of patients with Friedreich’s ataxia. J Clin Exp Neuropsychol. 2002;24(5):677–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Ann Rev Neurosci. 2009;32:413–34.PubMedCrossRefGoogle Scholar
  5. 5.
    Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6(3):159–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Bellebaum C, Daum I. Cerebellar involvement in executive control. Cerebellum. 2007;6(3):184–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Pandolfo M. Friedreich ataxia: detection of GAA repeat expansions and frataxin point mutations. Methods Mol Med. 2006;126:197–216.PubMedGoogle Scholar
  8. 8.
    Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335(16):1169–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Pandolfo M. Frataxin deficiency and mitochondrial dysfunction. Mitochondrion. 2002;2(1–2):87–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Waldvogel D, Van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedreich’s ataxia. Ann Neurol. 1999;46(1):123–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Bidichandani SI, Ashizawa T, Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet. 1998;62(1):111–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Berciano J, Infante J, Mateo I. Ataxias y paraplejías hereditarias: revisión clinicogenética. Neurologia. 2002;17(1):40–51.PubMedGoogle Scholar
  14. 14.
    Wollmann T, Nieto-Barco A, Monton-Alvarez F, Barroso-Ribal J. Friedreich’s ataxia: analysis of magnetic resonance imaging parameters and their correlates with cognitive and motor slowing. Rev Neurol. 2004;38(3):217–22.PubMedGoogle Scholar
  15. 15.
    Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Fehrenbach R, Wallesch C. Neuropsychological findings in Friedreich’s ataxia. Arch Neurol. 1984;41:306–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Hart R, Kwentus J, Leshner R. Information processing speed in Friedreich’s ataxia. Ann Neurol. 1985;17(6):612–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Botez-Marquard T, Botez MI. Cognitive behavior in heredodegenerative ataxias. Eur Neurol. 1993;33(5):351–7.PubMedCrossRefGoogle Scholar
  19. 19.
    White M, Lalonde R, Botez-Marquard T. Neuropsychologic and neuropsychiatric characteristics of patients with Freidreich’s ataxia. Acta Neurol Scand. 2000;102(4):222–6.PubMedCrossRefGoogle Scholar
  20. 20.
    De Nobrega ER, Nieto A, Barroso JE, Monton F. Differential impairment in semantic, phonemic, and action fluency performance in Friedreich’s ataxia: possible evidence of prefrontal dysfunction. J Int Neuropsychol Soc. 2007;13(06):944–52.PubMedGoogle Scholar
  21. 21.
    Corben LA, Delatycki MB, Bradshaw JL, Horne MK, Fahey MC, Churchyard AJ, et al. Impairment in motor reprogramming in Friedreich ataxia reflecting possible cerebellar dysfunction. J Neurol. 2010;257(5):782–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Klopper F, Delatycki MB, Corben LA, Bradshaw JL, Rance G, Georgiou-Karistianis N. The test of everyday attention reveals significant sustained volitional attention and working memory deficits in friedreich ataxia. J Int Neuropsychol Soc. 2011;17(1):196–200.PubMedCrossRefGoogle Scholar
  23. 23.
    Robertson IH, Ward A, Ridgeway V, Nimmo-Smith I. The test of everyday attention: TEA. Bury St Edmunds: Thames Valley Test Co.; 1994.Google Scholar
  24. 24.
    Mantovan M, Martinuzzi A, Squarzanti F, Bolla A, Silvestri I, Liessi G, et al. Exploring mental status in Friedreich’s ataxia: a combined neuropsychological, behavioral and neuroimaging study. Eur J Neurol. 2006;13(8):827–35.PubMedCrossRefGoogle Scholar
  25. 25.
    Harding A. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104(3):589–620.PubMedCrossRefGoogle Scholar
  26. 26.
    Van Swieten J, Koudstaal P, Visser M, Schouten H, Van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19(5):604–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Nobile–Orazio E, Baldini L, Barbieri S. Treatment of patients with neuropathy and anti–MAG IgM M–proteins. Ann Neurol. 1988;24(1):93–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Appollonio I, Grafman J, Schwartz V. Memory in patients with cerebellar degeneration. 1993;43:1536–44.Google Scholar
  29. 29.
    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRefGoogle Scholar
  30. 30.
    Wechsler D. Wechsler adult intelligence scale-administration and scoring manual. 3rd ed. San Antonio: Psychological Corporation; 1997.Google Scholar
  31. 31.
    Beck A, Ward C, Mendelson M, et al. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Schuhfried G. Vienna reaction unit. Manual. Vienna: Schuhfried Ges.m.b.H; 1992.Google Scholar
  33. 33.
    Erlenmeyer-Kimling L, Cornblatt BA. A summary of attentional findings in the New York high-risk project. J Psychiatr Res. 1992;26(4):405–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Golden C. Stroop color and word test: a manual for clinical and experimental uses. Chicago: Stoelting Company; 1978.Google Scholar
  35. 35.
    Wechsler D. Wechsler memory scale—third edition. Technical manual. San Antonio: Psychological Corporation; 1997.Google Scholar
  36. 36.
    Heaton R. A manual for the Wisconsin card sorting test. Odessa: Psychological Assessment Resources; 1981.Google Scholar
  37. 37.
    Benton A, Hamsher K, Sivan A. Multilingual aphasia examination. 2nd ed. Iowa: University of Iowa; 1989.Google Scholar
  38. 38.
    Piatt AL, Fields JA, Paolo AM, Tröster AI. Action (verb naming) fluency as an executive function measure: convergent and divergent evidence of validity. Neuropsychologia. 1999;37(13):1499–503.PubMedCrossRefGoogle Scholar
  39. 39.
    Delis D, Kramer J, Kaplan E, Ober B. California verbal learning test: adult version manual. San Antonio: Psychological Corporation; 1987.Google Scholar
  40. 40.
    Benedet MJ, Alejandre MA. TAVEC: test de Aprendizaje Verbal España-Complutense. Manual. Madrid: TEA ediciones; 1998.Google Scholar
  41. 41.
    Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis: I. Frequency, patterns, and prediction. Neurology. 1991;41(5):685–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Benton A, Hamsher S, Varney O, Spreen N. Contributions to neuropsychological assessment: a clinical manual. New York: Oxford University Press; 1983.Google Scholar
  43. 43.
    Quasha WH, Likert R. The revised Minnesota paper form board test. J Educ Psychol. 1937;28(3):197–204.CrossRefGoogle Scholar
  44. 44.
    Alameda J, Cuetos F. Diccionario de Frecuencia de las unidades lingüísticas del catellano (Vols. I y II). Oviedo: Servicio de Publicaciones de la Universidad de Oviedo; 1995.Google Scholar
  45. 45.
    Cuetos F, Alija M. Normative data and naming times for action pictures. Behav Res Methods Instrum Comput. 2003;35(1):168–77.PubMedCrossRefGoogle Scholar
  46. 46.
    Cuetos F, Ellis A, Alvarez B. Naming times for the Snodgrass and Vanderwart pictures in Spanish. Behav Res Methods Instrum Comput. 1999;31(4):650–8.PubMedCrossRefGoogle Scholar
  47. 47.
    IPNP. The International Picture Naming Project [internet]. 2011. Available at:∼aszekely/ipnp/1database.html. Accessed 30 June 2011.
  48. 48.
    Druks J, Masterson J. An object and action naming battery. Hove: Psychology Press; 1999.Google Scholar
  49. 49.
    Schneider W, Eschman A, Zuccolotto A. E-Prime user’s guide. Pittsburgh: Psychology Software Tools Inc.; 2002.Google Scholar
  50. 50.
    Camacho J. Análisis multivariado con spss/pc+. Barcelona: EUB; 1995.Google Scholar
  51. 51.
    Lezak M, Howieson D, Loring D. Neuropsychological assessment. 4th ed. New York: Oxford University Press; 2004.Google Scholar
  52. 52.
    Posner MI, Petersen SE. The attention system of the human brain. Ann Rev Neurosci. 1990;13:25–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Chan RCK, Lai M, Robertson IH. Latent structure of the Test of Everyday Attention in a non-clinical Chinese sample. Arch Clin Neuropsychol. 2006;21(5):477–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Bate AJ, Mathias JL, Crawford JR. Performance on the Test of Everyday Attention and standard tests of attention following severe traumatic brain injury. Clin Neuropsychol. 2001;15(3):405–22.PubMedCrossRefGoogle Scholar
  55. 55.
    Robertson IH, Ward T, Ridgeway V, Nimmo-Smith I. The structure of normal human attention: the test of everyday attention. J Int Neuropsychol Soc. 1996;2(06):525–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Chan R, Lee T, Hoosain R. Application of the test of everday attention in Hong Kong Chinese: a factor structure study. Arch Clin Neuropsychol. 1999;14(8):715–6.Google Scholar
  57. 57.
    Damasio AR, Tranel D. Nouns and verbs are retrieved with differently distributed neural systems. Proc Natl Acad Sci USA. 1993;90(11):4957–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Daniele A, Giustolisi L, Silveri MC, Colosimo C, Gainotti G. Evidence for a possible neuroanatomical basis for lexical processing of nouns and verbs. Neuropsychologia. 1994;32(11):1325–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Perani D, Cappa SF, Schnur T, Tettamanti M, Collina S, Rosa MM, et al. The neural correlates of verb and noun processing. A PET study. Brain J Neurol. 1999;122:12337–44.CrossRefGoogle Scholar
  60. 60.
    Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedCrossRefGoogle Scholar
  61. 61.
    Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199(3):175–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage. 2005;28(1):39–48.PubMedCrossRefGoogle Scholar
  63. 63.
    Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66.PubMedCrossRefGoogle Scholar
  64. 64.
    Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21(16):6283–91.PubMedGoogle Scholar
  65. 65.
    Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20(1):214–28.PubMedCrossRefGoogle Scholar
  66. 66.
    Oppenheimer D. Brain lesions in Friedreich’s ataxia. Can J Neurol Sci Le journal canadien des sciences neurologiques. 1979;6(2):173–6.Google Scholar
  67. 67.
    Oppenheimer D, Esiri M. Diseases of the basal ganglia, cerebellum and motor neurons. In: Duchen J, Adams L, editors. Greenfield’s neuropathology. London: Edward Arnold; 1976. p. 608–51.Google Scholar
  68. 68.
    Lamarche J, Lemieux B, Lieu H. The neuropathology of “typical” Friedreich’s ataxia in Quebec. Can J Neurol Sci Le J Can Sci Neurol. 1984;11(4 Suppl):592–600.Google Scholar
  69. 69.
    França MC, D’Abreu A, Yasuda CL, Bonadia LC, Santos da Silva M, Nucci A, et al. A combined voxel-based morphometry and 1 H-MRS study in patients with Friedreich’s ataxia. J Neurol. 2009;256(7):1114–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F, et al. Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. Neuroimage. 2008;40(1):19–25.PubMedCrossRefGoogle Scholar
  71. 71.
    Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F, et al. Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 2008;79(1):82–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Antonieta Nieto
    • 1
  • Rut Correia
    • 1
  • Erika de Nóbrega
    • 1
  • Fernando Montón
    • 2
  • Stephany Hess
    • 1
  • Jose Barroso
    • 1
  1. 1.School of PsychologyUniversity of La LagunaLa LagunaSpain
  2. 2.Department of NeurologyHospital N.S. La CandelariaS/C de TenerifeSpain

Personalised recommendations