The Cerebellum

, Volume 11, Issue 4, pp 1037–1044 | Cite as

Cognitive Deficits in Machado–Joseph Disease Correlate with Hypoperfusion of Visual System Areas

  • Pedro Braga-Neto
  • Lívia Almeida Dutra
  • José Luiz Pedroso
  • André C. Felício
  • Helena Alessi
  • Ruth F. Santos-Galduroz
  • Paulo Henrique F. Bertolucci
  • Mário Luiz V. Castiglioni
  • Rodrigo Affonseca Bressan
  • Griselda Esther Jara de Garrido
  • Orlando Graziani Povoas Barsottini
  • Andrea Jackowski
Original Paper

Abstract

Cognitive and olfactory impairments have previously been demonstrated in patients with spinocerebellar ataxia type 3 (SCA3), also known as Machado–Joseph disease (MJD)—SCA3/MJD. We investigated changes in regional cerebral blood flow (rCBF) using single-photon emission computed tomography (SPECT) imaging in a cohort of Brazilian patients with SCA3/MJD. The aim of the present study was to evaluate the correlation among rCBF, cognitive deficits, and olfactory dysfunction in SCA3/MJD. Twenty-nine genetically confirmed SCA3/MJD patients and 25 control subjects were enrolled in the study. The severity of cerebellar symptoms was measured using the International Cooperative Ataxia Rating Scale and the Scale for the Assessment and Rating of Ataxia. Psychiatric symptoms were evaluated by the Hamilton Anxiety Scale and Beck Depression Inventory. The neuropsychological assessment consisted of Spatial Span, Symbol Search, Picture Completion, the Stroop Color Word Test, Trail Making Test (TMT), and Phonemic Verbal Fluency. Subjects were also submitted to odor identification evaluation using the 16-item Sniffin’ Sticks. SPECT was performed using ethyl cysteine dimer labeled with technetium-99m. SCA3/MJD patients showed reduced brain perfusion in the cerebellum, temporal, limbic, and occipital lobes compared to control subjects (pFDR <0.001). A significant positive correlation was found between the Picture Completion test and perfusion of the left parahippocampal gyrus and basal ganglia in the patient group as well as a negative correlation between the TMT part A and bilateral thalamus perfusion. The visuospatial system is affected in patients with SCA3/MJD and may be responsible for the cognitive deficits seen in this disease.

Keywords

Machado–Joseph disease Spinocerebellar ataxia type 3 Cognition Olfaction Cognitive deficits SPECT 

References

  1. 1.
    Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMedCrossRefGoogle Scholar
  3. 3.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRefGoogle Scholar
  4. 4.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.PubMedCrossRefGoogle Scholar
  5. 5.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRefGoogle Scholar
  7. 7.
    Lima L, Coutinho P. Clinical criteria for diagnosis of Machado-Joseph disease: report of a non-Azorean Portuguese family. Neurology. 1980;30:319–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Jardim LB, Pereira ML, Silveira I, Ferro A, Sequeiros J, Giugliani R. Neurologic findings in Machado-Joseph disease: relation with disease duration, subtypes, and (CAG)n. Arch Neurol. 2001;58:899–904.PubMedCrossRefGoogle Scholar
  9. 9.
    Braga-Neto P, Felicio AC, Pedroso JL, Dutra LA, Bertolucci PHF, Gabbai AA, et al. Clinical correlates of olfactory dysfunction in spinocerebellar ataxia type 3. Parkinsonism Relat Disord. 2011;17:353–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Pedroso JL, Braga-Neto P, Felício AC, Dutra LA, Santos WAC, Do Prado GF, et al. Sleep disorders in Machado–Joseph disease: frequency, discriminative thresholds, predictive values and correlation with ataxia-related motor and non-motor features. Cerebellum. 2011;10:291–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Radvany J, Camargo CHP, Costa ZM, Fonseca NC, Nascimento ED. Machado Joseph disease of Azorean ancestry in Brazil: the Catarina kindred. Neurological, neuroimaging, psychiatric and neuropsychological findings in the largest known family, the Catarina kindred. Arq Neuropsiquiatr. 1993;51:21–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250:207–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;9:433–42.PubMedCrossRefGoogle Scholar
  14. 14.
    Zawacki TM, Grace J, Friedman JH, Sudarsky L. Executive and emotional dysfunction in Machado-Joseph disease. Mov Disord. 2002;17:1004–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J. Cognitive deficits in Machado-Joseph disease. Ann Neurol. 1996;40:421–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Kawai Y, Takeda A, Abe Y, Washimi Y, Tanaka F, Sobue G. Cognitive impairments in Machado-Joseph disease. Arch Neurol. 2004;61:1757–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Braga-Neto P, Pedroso JL, Alessi H, Dutra LA, Felício AC, Minett T, et al. (2012) Cerebellar cognitive affective syndrome in Machado Joseph disease: core clinical features. Cerebellum. doi:10.1007/s12311-011-0318-6
  18. 18.
    Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47:81–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Abele M, Riet A, Hummel T, Klockgether T, Wüllner U. Olfactory dysfunction in cerebellar ataxia and multiple system atrophy. J Neurol. 2003;250:1453–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Connelly T, Farmer JM, Lynch DR, Doty RL. Olfactory dysfunction in degenerative ataxias. J Neurol Neurosurg Psychiatr. 2003;74:1435–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Velázquez-Pérez L, Fernandez-Ruiz J, Díaz R, González RP, Ochoa NC, Cruz GS, et al. Spinocerebellar ataxia type 2 olfactory impairment shows a pattern similar to other major neurodegenerative diseases. J Neurol. 2006;253:1165–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Hawkes C. Olfaction in neurodegenerative disorder. Mov Disord. 2003;18(4):364–72.PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi N, Odano I, Nishihara M, Yuasa T, Sakai K. Regional cerebral blood flow measured with N-isopropyl-p-[123I]iodoamphetamine single-photon emission tomography in patients with Joseph disease. Eur J Nucl Med. 1994;21:615–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Etchebehere EC, Cendes F, Lopes-Cendes I, Pereira JA, Lima MC, Sansana CR, et al. Brain single-photon emission computed tomography and magnetic resonance imaging in Machado-Joseph disease. Arch Neurol. 2001;58:1257–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome: the Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OG. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuropsiquiatr. 2010;68:228–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Wechsler D. Wechsler memory scale–revised manual. San Antonio: Psychological Corporation; 1987.Google Scholar
  29. 29.
    Wechsler D. Wechsler adult intelligence scale, 3rd edition (WAIS III): test manual. 3rd ed. New York: The Psychological Corporation; 1997.Google Scholar
  30. 30.
    Weschsler D. WAIS-III: Escala de inteligência para adultos: Manual para administração e avaliação. 1st ed. São Paulo: Casa do Psicólogo; 2004.Google Scholar
  31. 31.
    Spreen O, Strauss E. A compendium of neuropsychological tests. 2nd ed. New York: Oxford University Press; 1998.Google Scholar
  32. 32.
    Reitan R. Validity of the trail making test as an indicator of organic brain damage. Percept Motor Skill. 1958;8:271–6.Google Scholar
  33. 33.
    Lezak MD. Neuropsychological assessment. New York: Oxford University Press; 2004.Google Scholar
  34. 34.
    Silveira-Moriyama L, Carvalho Mde J, Katzenschlager R, Petrie A, Ranvaud R, Barbosa ER, et al. The use of smell identification tests in diagnosis of Parkinson’s disease in Brazil. Mov Disord. 2008;23:2328–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839–51. Google Scholar
  36. 36.
    Rüb U, Brunt ER, Deller T. New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado Joseph disease). Curr Opin Neurol. 2008;21:111–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, et al. Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol. 1997;41:453–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Yamada M, Hayashi S, Tsuji S, Takahashi H. Involvement of the cerebral cortex and autonomic ganglia in Machado-Joseph disease. Acta Neuropathol. 2001;101:140–4.PubMedGoogle Scholar
  39. 39.
    D'Abreu A, França Jr MC, Yasuda CL, Campos BA, Lopes-Cendes I, Cendes F. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging. 2012. doi:10.1111/j.1552-6569.2011.00614.x
  40. 40.
    Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology. 2010;35:70–85.PubMedCrossRefGoogle Scholar
  41. 41.
    Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011;12:217–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Possin KL. Visual spatial cognition in neurodegenerative disease. Neurocase. 2010;16:466–87.PubMedCrossRefGoogle Scholar
  43. 43.
    Doeller CF, Kaplan R. Parahippocampal cortex: translating vision into space. Curr Biol. 2011;21(15):R589–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Macevoy SP, Epstein RA. Constructing scenes from objects in human occipitotemporal cortex. Nat Neurosci. 2011;14:1323–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Schmahmann JD, Pandya DN. Disconnection syndromes of basal ganglia, thalamus and cerebrocerebellar systems. Cortex. 2008;44:1037–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Middleton FA, Strick PL. Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn. 2000;42:183–200.PubMedCrossRefGoogle Scholar
  47. 47.
    Bostan AC, Strick PL. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20:261–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Rüb U, de Vos RA, Brunt ER, Sebestény T, Schöls L, Auburger G, et al. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol. 2006;16:218–27.PubMedCrossRefGoogle Scholar
  49. 49.
    De Oliveira MS, D'Abreu A, França Jr MC, Lopes-Cendes I, Cendes F, Castellano G. MRI-Texture analysis of corpus callosum, thalamus, putamen, and caudate in Machado-Joseph disease. J Neuroimaging. 2012. doi:10.1111/j.1552-6569.2010.00553.x
  50. 50.
    Crowe SF. The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. J Clin Psychol. 1998;54:585–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Tanaka M, Kunimatsu J. Contribution of the central thalamus to the generation of volitional saccades. Eur J Neurosci. 2011;33:2046–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Saalmann YB, Kastner S. Cognitive and perceptual functions of the visual thalamus. Neuron. 2011;28(71):209–23.CrossRefGoogle Scholar
  53. 53.
    Molinari M, Leggio MG. Cerebellar information processing and visuospatial functions. Cerebellum. 2007;6:214–20.PubMedCrossRefGoogle Scholar
  54. 54.
    Meyer JS, Obara K, Muramatsu K. Diaschisis. Neurol Res. 1993;15:362–6.PubMedGoogle Scholar
  55. 55.
    Kim YT, Shin SM, Lee WY, Kim GM, Jin DK. Expression of expanded polyglutamine protein induces behavioral changes in Drosophila (polyglutamine-induced changes in Drosophila). Cell Mol Neurobiol. 2004;24:109–22.PubMedCrossRefGoogle Scholar
  56. 56.
    Goti D, Katzen SM, Mez J, Kurtis N, Kiluk J, Ben-Haïem L, et al. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci. 2004;24:10266–79.PubMedCrossRefGoogle Scholar
  57. 57.
    Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Zhao Z, Glover GH, et al. Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci. 1998;18(21):8990–9001.PubMedGoogle Scholar
  58. 58.
    Qureshy A, Kawashima R, Imran MB, Sugiura M, Goto R, Okada K, Inoue K, et al. Functional mapping of human brain in olfactory processing: a PET study. J Neurophysiol. 2000;84:1656–66.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Pedro Braga-Neto
    • 1
    • 2
    • 8
  • Lívia Almeida Dutra
    • 1
    • 2
  • José Luiz Pedroso
    • 1
  • André C. Felício
    • 1
  • Helena Alessi
    • 2
  • Ruth F. Santos-Galduroz
    • 3
    • 4
  • Paulo Henrique F. Bertolucci
    • 2
  • Mário Luiz V. Castiglioni
    • 5
  • Rodrigo Affonseca Bressan
    • 6
  • Griselda Esther Jara de Garrido
    • 7
  • Orlando Graziani Povoas Barsottini
    • 1
  • Andrea Jackowski
    • 6
  1. 1.Ataxia Unit, Department of Neurology and NeurosurgeryUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Behavior Neurology Section, Department of Neurology and NeurosurgeryUniversidade Federal de São PauloSão PauloBrazil
  3. 3.Center of Mathematics, Computer and Cognition–Universidade Federal do ABC, UFABCSão PauloBrazil
  4. 4.Institute of Biosciences, UNESPRio ClaroBrazil
  5. 5.Section of Nuclear Medicine, Department of RadiologyUniversidade Federal de São PauloSão PauloBrazil
  6. 6.Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of PsychiatryUniversidade Federal de São PauloSão PauloBrazil
  7. 7.Western Australian Centre for Health & Ageing, Centre for Medical ResearchUniversity of Western AustraliaCrawleyAustralia
  8. 8.São PauloBrazil

Personalised recommendations