The Cerebellum

, Volume 11, Issue 2, pp 457–487 | Cite as

Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement

  • Mario MantoEmail author
  • James M. Bower
  • Adriana Bastos Conforto
  • José M. Delgado-García
  • Suzete Nascimento Farias da Guarda
  • Marcus Gerwig
  • Christophe Habas
  • Nobuhiro Hagura
  • Richard B. Ivry
  • Peter Mariën
  • Marco Molinari
  • Eiichi Naito
  • Dennis A. Nowak
  • Nordeyn Oulad Ben Taib
  • Denis Pelisson
  • Claudia D. Tesche
  • Caroline Tilikete
  • Dagmar Timmann


Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.


Cerebellum Cortex Nuclei Purkinje neurons Eye movements Stability Classical conditioning Motor speech Network Grip force Grasping Predictive Dysmetria Torques Timing Synchronization Excitability Sensory fMRI Magnetoencephalography (MEG) 


Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Baier B, Stoeter P, Dieterich M. Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain. 2009;132:2114–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Ohki M, Kitazawa H, Hiramatsu T, Kaga K, Kitamura T, Yamada J, Nagao S. Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol. 2009;101(2):934–47.PubMedGoogle Scholar
  3. 3.
    Hiramatsu T, Ohki M, Kitazawa H, Xiong G, Kitamura T, Yamada J, Nagao S. Role of primate cerebellar lobulus petrosus of paraflocculus in smooth pursuit eye movement control revealed by chemical lesion. Neurosci Res. 2008;60(3):250–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol. 1980;7:37–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46:878–99.PubMedGoogle Scholar
  6. 6.
    Baier B, Dieterich M. Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology. 2011;76:361–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228:199–202.PubMedCrossRefGoogle Scholar
  8. 8.
    Jeong HS, Oh JY, Kim JS, Kim J, Lee AY, Oh SY. Periodic alternating nystagmus in isolated nodular infarction. Neurology. 2007;68:956–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Leigh RJ, Robinson DA, Zee DS. A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic–vestibular system. Ann NY Acad Sci. 1981;374:619–35.PubMedCrossRefGoogle Scholar
  10. 10.
    Solomon D, Cohen B. Stimulation of the nodulus and uvula discharges velocity storage in the vestibulo-ocular reflex. Exp Brain Res. 1994;102:57–68.PubMedCrossRefGoogle Scholar
  11. 11.
    Cohen B, Helwig D, Raphan T. Baclofen and velocity storage: a model of the effects of the drug on the vestibulo-ocular reflex in the rhesus monkey. J Physiol. 1987;393:703–25.PubMedGoogle Scholar
  12. 12.
    Halmagyi GM, Rudge P, Gresty MA, Leigh RJ, Zee DS. Treatment of periodic alternating nystagmus. Ann Neurol. 1980;8:609–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Tilikete C, Vighetto A, Trouillas P, Honnorat J. Anti-GAD antibodies and periodic alternating nystagmus. Arch Neurol. 2005;62:1300–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Leigh RJ, Zee DS. The neurology of eye movements. Oxford: Oxford University Press; 2006.Google Scholar
  15. 15.
    Serra A, Liao K, Martinez-Conde S, Optican LM, Leigh RJ. Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology. 2008;70:810–2.PubMedCrossRefGoogle Scholar
  16. 16.
    Shaikh AG, Marti S, Tarnutzer AA, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry. 2009;80:858–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Dean P, Porrill J. Adaptive-filter models of the cerebellum: computational analysis. Cerebellum. 2008;7:567–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R. Cerebellar contributions to adaptive control of saccades in humans. J Neurosci. 2009;29:12930–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Alahyane N, Fonteille V, Urquizar C, Salemme R, Nighoghossian N, Pélisson D, Tilikete C. Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades. Cerebellum. 2008;7:595–601.PubMedCrossRefGoogle Scholar
  20. 20.
    Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.PubMedGoogle Scholar
  21. 21.
    Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57:2105–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80:1911–31.PubMedGoogle Scholar
  23. 23.
    Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87:912–24.PubMedGoogle Scholar
  24. 24.
    Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol. 2000;83:2047–62.PubMedGoogle Scholar
  25. 25.
    Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol. 2005;15:2179–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Pelisson D, Alahyane N, Panouilleres M, Tilikete C. Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev. 2010;34:1103–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol. 2008;100:1949–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Shelhamer M, Tiliket C, Roberts D, Kramer PD, Zee DS. Short-term vestibulo-ocular reflex adaptation in humans. II. Error signals. Exp Brain Res. 1994;100:328–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Porrill J, Dean P. Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol. 2007;3:1935–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Dash S, Catz N, Dicke PW, Thier P. Specific vermal complex spike responses build up during the course of smooth-pursuit adaptation, paralleling the decrease of performance error. Exp Brain Res. 2010;205:41–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.PubMedCrossRefGoogle Scholar
  32. 32.
    Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886:237–45.PubMedCrossRefGoogle Scholar
  33. 33.
    Bernstein AL. Temporal factors in the formation of conditioned eyelid reactions in human subjects. J Gen Psychol. 1934;10:173–97.CrossRefGoogle Scholar
  34. 34.
    Marquis DG, Porter JM. Differential characteristics of conditioned eyelid responses established by reflex and voluntary reinforcement. J Exp Psychol. 1939;24:347–65.CrossRefGoogle Scholar
  35. 35.
    Grant DA, Adams JK. ‘Alpha’ conditioning in the eyelid. J Exp Psychol. 1944;34:136–42.CrossRefGoogle Scholar
  36. 36.
    Hilgard ER, Marquis DG. Conditioning and learning. 2nd ed. New York: Appleton-Century-Crofts; 1968.Google Scholar
  37. 37.
    Gormezano I, Kehoe EJ, Marshall BS. Twenty years of classical conditioning research with the rabbit. Prog Psychobiol Physiol Psychol. 1983;10:197–275.Google Scholar
  38. 38.
    Schneiderman N, Fuentes I, Gormezano I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science. 1962;136:650–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Trigo JA, Gruart A, Delgado-García JM. Discharge profiles of abducens, accessory abducens, and orbicularis oculi motoneurons during reflex and conditioned blinks in alert cats. J Neurophysiol. 1999;81:1666–84.PubMedGoogle Scholar
  40. 40.
    Evinger C, Manning KA, Sibony PA. Eyelid movements. Mechanisms and normal data. Invest Ophthalmol Vis Sci. 1991;32:387–400.PubMedGoogle Scholar
  41. 41.
    Gruart A, Blázquez P, Delgado-García JM. Kinematics of spontaneous, reflex, and conditioned eyelid movements in the alert cat. J Neurophysiol. 1995;74:226–48.PubMedGoogle Scholar
  42. 42.
    Gruart A, Schreurs BG, del Toro ED, Delgado-García JM. Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit. J Neurophysiol. 2000;83:836–52.PubMedGoogle Scholar
  43. 43.
    Koekkoek SK, Den Ouden WL, Perry G, Highstein SM, De Zeeuw CI. Monitoring kinetic and frequency-domain properties of eyelid responses in mice with magnetic distance measurement technique. J Neurophysiol. 2002;88:2124–33.PubMedGoogle Scholar
  44. 44.
    Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29:330–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Morcuende S, Delgado-Garcia JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci. 2002;22:8808–18.PubMedGoogle Scholar
  46. 46.
    Thompson RF. The neurobiology of learning and memory. Science. 1986;233:941–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Woody CD. Understanding the cellular basis of memory and learning. Annu Rev Psychol. 1986;37:433–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Yeo CH, Hardiman M. J. Cerebellar cortex and eyeblink conditioning: a reexamination. Exp Brain Res. 1992;88:623–38.PubMedCrossRefGoogle Scholar
  49. 49.
    Thompson RF. In search of memory traces. Annu Rev Psychol. 2005;56:1–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.PubMedGoogle Scholar
  51. 51.
    Jiménez-Díaz L, Navarro-López Jde D, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci. 2004;24:9138–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Welsh JP, Harvey JA. Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. J Physiol (Lond). 1991;444:459–80.Google Scholar
  53. 53.
    Welsh JP. Changes in the motor pattern of learned and unlearned responses following cerebellar lesions: a kinematic analysis of the nictitating membrane reflex. Neuroscience. 1992;47:1–19.PubMedCrossRefGoogle Scholar
  54. 54.
    Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162:787–96.PubMedCrossRefGoogle Scholar
  55. 55.
    Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic associations in the cerebellar–motoneuron network during motor learning. J Neurosci. 2009;29:10750–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Boele HJ, Koekkoek SKE, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front Cell Neurosci. 2009;3:19.CrossRefGoogle Scholar
  57. 57.
    Aou S, Woody CD, Birt D. Changes in the activity of units of the cat motor cortex with rapid conditioning and extinction of a compound eye blink movement. J Neurosci. 1992;12:549–59.PubMedGoogle Scholar
  58. 58.
    Woodruff-Pak DS, Steinmetz JE. Past, present, and future of human eyeblink classical conditioning. In: Woodruff-Pak DS, Steinmetz JE, editors. Eyeblink classical conditioning: volume I. Applications in humans. Kluwer: Norwell; 2000. p. 1–17.Google Scholar
  59. 59.
    Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. Cerebellum. 2007;6:38–57.PubMedCrossRefGoogle Scholar
  60. 60.
    Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav Neurosci. 1993;107:748–56.PubMedCrossRefGoogle Scholar
  61. 61.
    Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116:961–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10:443–58.CrossRefGoogle Scholar
  63. 63.
    Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126:71–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Bracha V, Zhao L, Wunderlich DA, Morrissy SJ, Bloedel JR. Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brain. 1997;120:1401–13.PubMedCrossRefGoogle Scholar
  65. 65.
    Gerwig M, Guberina H, Esser AC, Siebler M, Schoch B, Frings M, Kolb FP, Aurich V, Beck A, Forsting M, Timmann D. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res. 2010;212:143–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Woodruff-Pak DS, Vogel 3rd RW, Ewers M, Coffey J, Boyko OB, Lemieux SK. MRI assessed volume of cerebellum correlates with associative learning. Neurobiol Learn Mem. 2001;76:342–57.PubMedCrossRefGoogle Scholar
  67. 67.
    Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, Aurich V, Kolb FP, Timmann D. Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res. 2008;1198:73–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Lye RH, Boyle DJ, Ramsden RT, Schady W. Effects of a unilateral cerebellar lesion on the acquisition of eye-blink conditioning in man. J Physiol. 1988;403:58P.Google Scholar
  69. 69.
    Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25:3919–31.PubMedCrossRefGoogle Scholar
  70. 70.
    Ramnani N, Toni I, Josephs O, Ashburner J, Passingham RE. Learning and expectation related changes in the human brain during motor learning. J Neurophysiol. 2000;84:3026–35.PubMedGoogle Scholar
  71. 71.
    Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci USA. 2008;105:8108–13.PubMedCrossRefGoogle Scholar
  72. 72.
    Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit II. Lesions of the cerebellar cortex. Exp Brain Res. 1985;60:99–113.PubMedCrossRefGoogle Scholar
  73. 73.
    Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.PubMedGoogle Scholar
  74. 74.
    Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;11:427–55.CrossRefGoogle Scholar
  75. 75.
    Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, Schoch B. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162:836–51. Review.PubMedCrossRefGoogle Scholar
  76. 76.
    Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, Ladd ME, Timmann D. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54(3):1786–94.PubMedCrossRefGoogle Scholar
  77. 77.
    McGlinchey-Berroth R, Fortier CB, Cermak LS, Disterhoft JF. Temporal discrimination learning in abstinent chronic alcoholics. Alcohol Clin Exp Res. 2002;26:804–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Kronenbuerger M, Gerwig M, Brol B, Block F, Timmann D. Eyeblink conditioning is impaired in subjects with essential tremor. Brain. 2007;130:1538–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Teo JT, van de Warrenburg BP, Schneider SA, Rothwell JC, Bhatia KP. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry. 2009;80:80–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Smit AE, van der Geest JN, Vellema M, Koekkoek SK, Willemsen R, Govaerts LC, Oostra BA, De Zeeuw CI, VanderWerf F. Savings and extinction of conditioned eyeblink responses in fragile X syndrome. Genes Brain Behav. 2008;7:770–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Forsyth JK, Bolbecker AR, Mehta CS, Klaunig MJ, Steinmetz JE, O'Donnell BF, Hetrick WP. Cerebellar-dependent eyeblink conditioning deficits in schizophrenia spectrum disorders. Schizophr Bull. 2011; in press.Google Scholar
  82. 82.
    Frings M, Gaertner K, Buderath P, Gerwig M, Christiansen H, Schoch B, Gizewski ER, Hebebrand J, Timmann D. Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Exp Brain Res. 2010;201:167–76.PubMedCrossRefGoogle Scholar
  83. 83.
    Lenneberg EH. Biological foundations of language. New York: Wiley; 1967.Google Scholar
  84. 84.
    Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.PubMedCrossRefGoogle Scholar
  85. 85.
    Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, Ackermann H. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology. 2005;64:700–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Jürgens U. Neural pathways underlying vocal control. Neurosci Biobehav Rev. 2002;26:232–58.CrossRefGoogle Scholar
  87. 87.
    Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.CrossRefGoogle Scholar
  88. 88.
    Darley FL, Aronson AE, Brown JR. Motor speech disorders. Philadelphia: WB Saunders; 1975.Google Scholar
  89. 89.
    Holmes G. Clinical symptoms cerebellar disease and their interpretation. Lancet. 1922;2:59–65.Google Scholar
  90. 90.
    Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.PubMedCrossRefGoogle Scholar
  91. 91.
    Ackermann H, Hertrich I. The contribution of the cerebellum to speech processing. J Neurol. 2000;13:95–116.Google Scholar
  92. 92.
    Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.PubMedCrossRefGoogle Scholar
  93. 93.
    Ackermann H, Ziegler W. Acoustic analysis of vocal instability in cerebellar dysfunctions. Ann Otol Rhinol Laryngol. 1994;103:98–104.PubMedGoogle Scholar
  94. 94.
    Kent RD, Kent JF, Rosenbek JC, Vorperian HK, Weismer G. A speaking task analysis of the dysarthria in cerebellar disease. Folia Phon Logop. 1997;49:63–82.CrossRefGoogle Scholar
  95. 95.
    Callan DE, Tsytsarev V, Hanakawa T, Callan AM, Katsuhara M, Fukuyama H, Turner R. Song and speech: brain regions involved with perception and covert production. Neuroimage. 2006;31:1327–42.PubMedCrossRefGoogle Scholar
  96. 96.
    Fiez JA, Raichle ME. Linguistic processing. In: Schmahmann JD, editor. The cerebellum and cognition. International review of neurobiology, vol. 41. San Diego: Academic; 1997. p. 233–54.Google Scholar
  97. 97.
    Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Mariën P, Verhoeven J, Engelborghs S, Rooker S, Pickut BA, De Deyn PP. A role for the cerebellum in motor speech planning: evidence from foreign accent syndrome. Clin Neurol Neurosurg. 2006;108:518–25.PubMedCrossRefGoogle Scholar
  99. 99.
    Mariën P, Verhoeven J. Cerebellar involvement in motor speech planning: some further evidence from foreign accent syndrome. Folia Phoniatr Logop. 2007;59:210–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Cohen DA, Kurowski K, Steven MS, Blumstein SE, Pascual-Leone A. Paradoxical facilitation: the resolution of foreign accent syndrome after cerebellar stroke. Neurology. 2009;73:566–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Mariën P, Verhoeven J, Brouns R, De Witte L, Dobbeleir A, De Deyn PP. Apraxic agraphia following a right cerebellar hemorrhage. Neurology. 2007;69:926–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Mariën P, Wackenier P, De Surgeloose D, De Deyn PP, Verhoeven J. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. Cerebellum. 2010;9:405–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Beaton A, Mariën P. Language, cognition and the cerebellum: grappling with and enigma. Cortex. 2010;46:811–20.PubMedCrossRefGoogle Scholar
  104. 104.
    Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110:763–73.PubMedCrossRefGoogle Scholar
  105. 105.
    Murdoch BE. The cerebellum and language: historical perspective and review. Cortex. 2010;46:858–68.PubMedCrossRefGoogle Scholar
  106. 106.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedCrossRefGoogle Scholar
  107. 107.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRefGoogle Scholar
  108. 108.
    Manto MU. Physiology of the cerebellum. In: Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambridge University Press; 2010. p. 23–35.CrossRefGoogle Scholar
  109. 109.
    Wolpert DM, Flanagan JR. Motor prediction. Curr Biol. 2001;11:R729–32.PubMedCrossRefGoogle Scholar
  110. 110.
    Flanagan JR, Wing AM. Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res. 1993;95:131–43.PubMedCrossRefGoogle Scholar
  111. 111.
    Johansson RS, Westling G. Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res. 1988;71:72–86.PubMedGoogle Scholar
  112. 112.
    Nowak DA, Hermsdörfer J, Marquardt C, Fuchs HH. Grip and load force coupling during discrete vertical movements in cerebellar atrophy. Exp Brain Res. 2002;145:28–39.PubMedCrossRefGoogle Scholar
  113. 113.
    Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.PubMedCrossRefGoogle Scholar
  114. 114.
    Rost K, Nowak DA, Timmann D, Hermsdörfer J. Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol. 2005;116:1405–14.PubMedCrossRefGoogle Scholar
  115. 115.
    Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, Timmann D. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol. 2008;119(11):2528–37.PubMedCrossRefGoogle Scholar
  116. 116.
    Nowak DA, Timmann D, Hermsdörfer J. Dexterity in cerebellar agenesis. Neuropsychologia. 2007;45:696–703.PubMedCrossRefGoogle Scholar
  117. 117.
    Fellows SJ, Ernst J, Schwarz M, Topper R, Noth J. Precision grip in cerebellar disorders in man. Clin Neurophysiol. 2001;112:1793–802.PubMedCrossRefGoogle Scholar
  118. 118.
    Serrien JD, Wiesendanger M. Grip-load coordination in cerebellar patients. Exp Brain Res. 1999;128:76–80.PubMedCrossRefGoogle Scholar
  119. 119.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.PubMedCrossRefGoogle Scholar
  120. 120.
    Blakemore SJ, Frith CD, Wolpert DM. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 2001; 1879–1884.Google Scholar
  121. 121.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRefGoogle Scholar
  122. 122.
    Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.PubMedCrossRefGoogle Scholar
  123. 123.
    Boecker H, Lee A, Mühlau M, Ceballos-Baumann AO, Ritzl A, Spilker M, Marquardt C, Hermsdörfer J. Force level independent representation of predictive grip force–load force coupling: a PET activation study. Neuroimage. 2005;25(1):243–52.PubMedCrossRefGoogle Scholar
  124. 124.
    Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: FMRI study on grip force and load force coupling. Progr Brain Res. 2003;142:171–88.CrossRefGoogle Scholar
  125. 125.
    Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshiaka T, Kawato M. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403:192–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can J Neurol Sci. 1993;20 Suppl 3:S93–S104.PubMedGoogle Scholar
  127. 127.
    Bares M, Lungu OV, Husárová I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–35.PubMedCrossRefGoogle Scholar
  128. 128.
    Gilman S. The mechanism of cerebellar hypotonia. An experimental study in the monkey. Brain. 1969;92(3):621–38.PubMedCrossRefGoogle Scholar
  129. 129.
    Gilman S, Bloedel JR, Lechtenberg R. Disorders of the cerebellum. Contemporary Neurology Series, vol. 21. Philadelphia: F.A. Davis; 1981.Google Scholar
  130. 130.
    Hallett M, Shahani BT, Young RR. EMG analysis in patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38:1163–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.PubMedGoogle Scholar
  132. 132.
    Manto M, Godaux E, Jacquy J, Hildebrand J. Cerebellar hypermetria associated with a selective decrease in the rate of rise of the antagonist electromyographic activity. Ann Neurol. 1996;39:271–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Manto M, Van Den Braber N, Grimaldi G, Lammertse P. A new myohaptic instrument to assess wrist motion dynamically. Sensors. 2010;10:3180–94.PubMedCrossRefGoogle Scholar
  134. 134.
    Topka H, Konczak J, Schneider K, Boose A, Dichgans J. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res. 1998;119(4):493–503.PubMedCrossRefGoogle Scholar
  135. 135.
    Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.PubMedGoogle Scholar
  136. 136.
    Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119(Pt 4):1183–98.PubMedCrossRefGoogle Scholar
  137. 137.
    Timmann D, Brandauer B, Hermsdörfer J, Ilg W, Konczak J, Gerwig M, Gizewski ER, Schoch B. Lesion-symptom mapping of the human cerebellum. Cerebellum. 2008;7(4):602–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.PubMedCrossRefGoogle Scholar
  139. 139.
    Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.PubMedCrossRefGoogle Scholar
  140. 140.
    Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD, Marsden CD. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(Pt 2):661–74.PubMedCrossRefGoogle Scholar
  141. 141.
    Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76(1):492–509.PubMedGoogle Scholar
  142. 142.
    Ivry R. Cerebellar timing systems. Int Rev Neurobiol. 1997;41:555–73.PubMedCrossRefGoogle Scholar
  143. 143.
    Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127(Pt 3):561–74.PubMedGoogle Scholar
  144. 144.
    Kent RD, Netsell R, Abbs JH. Acoustic characteristics of dysarthria associated with cerebellar disease. J Speech Hear Res. 1979;22(3):627–48.PubMedGoogle Scholar
  145. 145.
    Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60(2):323–31.PubMedCrossRefGoogle Scholar
  146. 146.
    Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci USA. 2010;107(25):11597–601.PubMedCrossRefGoogle Scholar
  147. 147.
    Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13(2):250–5.PubMedCrossRefGoogle Scholar
  148. 148.
    Moberget T, Karns CM, Deouell LY, Lindgren M, Knight RT, Ivry RB. Detecting violations of sensory expectancies following cerebellar degeneration: a mismatch negativity study. Neuropsychologia. 2008;46(10):2569–79.PubMedCrossRefGoogle Scholar
  149. 149.
    O'Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.PubMedCrossRefGoogle Scholar
  150. 150.
    Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.PubMedCrossRefGoogle Scholar
  151. 151.
    Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18(2):137–44. Epub 2008 Aug 12.CrossRefPubMedGoogle Scholar
  152. 152.
    Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–65.PubMedCrossRefGoogle Scholar
  153. 153.
    Bullock D. Adaptive neural models of queuing and timing in fluent action. Trends Cogn Sci. 2004;8(9):426–33.PubMedCrossRefGoogle Scholar
  154. 154.
    Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300(5624):1437–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Kalmbach BE, Ohyama T, Kreider JC, Riusech F, Mauk MD. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn Mem. 2009;16(1):86–95.PubMedCrossRefGoogle Scholar
  156. 156.
    Mangels JA, Ivry RB, Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Brain Res Cogn Brain Res. 1998;7(1):15–39.PubMedCrossRefGoogle Scholar
  157. 157.
    Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.PubMedCrossRefGoogle Scholar
  158. 158.
    Yamazaki T, Tanaka S. Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum. 2009;8(4):423–32.PubMedCrossRefGoogle Scholar
  159. 159.
    D'Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40.PubMedCrossRefGoogle Scholar
  160. 160.
    Miall RC, Christensen LO, Cain O, Stanley J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 2007;5(11):e316.PubMedCrossRefGoogle Scholar
  161. 161.
    Diedrichsen J, Criscimagna-Hemminger SE, Shadmehr R. Dissociating timing and coordination as functions of the cerebellum. J Neurosci. 2007;27(23):6291–301.PubMedCrossRefGoogle Scholar
  162. 162.
    Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.PubMedCrossRefGoogle Scholar
  163. 163.
    Pressing J. The referential dynamics of cognition and action. Psychol Rev. 1999;106:714–47.CrossRefGoogle Scholar
  164. 164.
    Bower JM. Control of sensory data acquisition. Int Rev Neurobiol. 1997;41:489–513.PubMedCrossRefGoogle Scholar
  165. 165.
    Ivry R, Keele S. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.CrossRefGoogle Scholar
  166. 166.
    Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–77.PubMedGoogle Scholar
  168. 168.
    Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia. 2003;41:252–62.PubMedCrossRefGoogle Scholar
  169. 169.
    Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge [see comments]. Science. 1994;263:1287–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, Petrosini L. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.PubMedCrossRefGoogle Scholar
  171. 171.
    Tesche CD, Karhu JJ. Anticipatory cerebellar responses during somatosensory omission in man [see comments]. Hum Brain Mapp. 2000;9:119–42.PubMedCrossRefGoogle Scholar
  172. 172.
    Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMedCrossRefGoogle Scholar
  173. 173.
    Restuccia D, Della MG, Valeriani M, Leggio MG, Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain. 2007;130:276–87.PubMedCrossRefGoogle Scholar
  174. 174.
    Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.PubMedCrossRefGoogle Scholar
  175. 175.
    Penn HE. Neurobiological correlates of autism: a review of recent research. Child Neuropsychol. 2006;12:57–79.PubMedCrossRefGoogle Scholar
  176. 176.
    Ho BC, Mola C, Andreasen NC. Cerebellar dysfunction in neuroleptic naive schizophrenia patients: clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biol Psychiatry. 2004;55:1146–53.PubMedCrossRefGoogle Scholar
  177. 177.
    Rumiati RI, Papeo L. Corradi-Dell'Acqua C. Higher-level motor processes. Ann NY Acad Sci. 2010;1191:219–41.PubMedCrossRefGoogle Scholar
  178. 178.
    Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.PubMedCrossRefGoogle Scholar
  179. 179.
    Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67:448–58.PubMedCrossRefGoogle Scholar
  180. 180.
    Hantman AW, Jessell TM. Clarke's column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci. 2010;13:1233–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;13:6–10.Google Scholar
  182. 182.
    Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84:585–90.PubMedGoogle Scholar
  183. 183.
    Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol. 2008;586:325–51.PubMedCrossRefGoogle Scholar
  184. 184.
    Rudiak D, Marg E. Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol. 1994;93(5):358–71.PubMedCrossRefGoogle Scholar
  185. 185.
    Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.PubMedCrossRefGoogle Scholar
  186. 186.
    Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557:689–700.PubMedCrossRefGoogle Scholar
  187. 187.
    Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3:161–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527.3:633–9.CrossRefGoogle Scholar
  189. 189.
    Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Thetaburst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.PubMedCrossRefGoogle Scholar
  190. 190.
    Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540:623–33.PubMedCrossRefGoogle Scholar
  191. 191.
    Luft AR, Manto MU, Taib NOB. Modulation of motor cortex excitability by sustained peripheral stimulation: the interaction between the motor cortex and the cerebellum. Cerebellum. 2005;4:90–6.PubMedCrossRefGoogle Scholar
  192. 192.
    Oulad Ben Taib N, Manto M, Laute MA, Brotchi J. The cerebellum modulates rodent cortical motor output after repetitive somatosensory stimulation. Neurosurgery. 2005;56:811–20.PubMedCrossRefGoogle Scholar
  193. 193.
    Oulad Ben Taib N, Manto M, Massimo P, Brotchi J. Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat. J Physiol. 2005;567:293–300.CrossRefGoogle Scholar
  194. 194.
    Hanajima R, Wang R, Nakatani-Enomoto S, Hamada M, Terao Y, Furubayashi T, et al. Comparison of different methods for estimating motor threshold with transcranial magnetic stimulation. Clin Neurophysiol. 2007;118:2120–2.PubMedCrossRefGoogle Scholar
  195. 195.
    Lee H, Gunraj C, Chen R. The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex. J Physiol. 2007;580.3:1021–32.CrossRefGoogle Scholar
  196. 196.
    Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticortical inhibition in human motor cortex. J Physiol (Lond). 1993;471:501–19.Google Scholar
  197. 197.
    Benardo LS. Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. J Neurophysiol. 1997;22:3134–44.Google Scholar
  198. 198.
    Liepert J, Kucinski T, Tüscher O, Pawlas F, Bäumer T, Weiller C. Motor cortex excitability after cerebellar infarction. Stroke. 2004;35:2484–8.PubMedCrossRefGoogle Scholar
  199. 199.
    Da Guarda SNF, Cohen LG, Pinho MC, Yamamoto FI, Marchiori PE, Scaff M, Conforto AB. Interhemispheric asymmetry of corticomotor excitability after chronic cerebellar infarcts. Cerebellum. 2010;9:398–404.CrossRefGoogle Scholar
  200. 200.
    Schwenkreis P, Tegenthoff M, Witscher K, Börnke C, Przuntek H, Malin JP, et al. Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain. 2002;125(2):301–9.PubMedCrossRefGoogle Scholar
  201. 201.
    Tamburin S, Fiaschi A, Marani S, Andreoli A, Manganotti P, Zanette G. Enhanced intracortical inhibition in cerebellar patients. J Neurol Sci. 2004;217(2):205–10.PubMedCrossRefGoogle Scholar
  202. 202.
    Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRefGoogle Scholar
  203. 203.
    Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum. 2005;4:218–23.PubMedCrossRefGoogle Scholar
  204. 204.
    Clarac F. Some historical reflections on the neural control of locomotion. Brain Res Rev. 2008;57(1):13–21.PubMedCrossRefGoogle Scholar
  205. 205.
    Apps R, Garwicz M. Anatomical and physiological foundations for cerebellar information processing. Nat Rev Neurosci. 2005;6(4):297–311.PubMedCrossRefGoogle Scholar
  206. 206.
    Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 2010;121(8):1437–49.CrossRefGoogle Scholar
  207. 207.
    Bower JM, Kassel J. Variability in tactile projection patterns to cerebellar folia crus IIA in the Norway rat. J Comp Neurol. 1990;302:768–78.PubMedCrossRefGoogle Scholar
  208. 208.
    Santamaria F, Tripp P, Bower JM. Feed-forward inhibition controls the spread of granule cell induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol. 2007;97:248–63.PubMedCrossRefGoogle Scholar
  209. 209.
    Bloedel JR, Courville J. Cerebellar afferent systems. In: Brookhart JM, Mountcastle VB, editors. Handbook of physiology, Sect. 1, Vol. II, Pt. 2. Bethesda: American Physiological Society; 1981. p. 735–829.Google Scholar
  210. 210.
    Keifer J, Houk JC. Motor function of the cerebellorubrospinal system. Physiol Rev. 1994;74(3):509–42.PubMedGoogle Scholar
  211. 211.
    Grillner S. Supraspinal and segmental control of static and dynamic gamma-motoneurons in the cat. Acta Physiol Scand Suppl. 1969;327:1–34.PubMedGoogle Scholar
  212. 212.
    Flament D, Fortier PA, Fetz EE. Response patterns and postspike effects of peripheral afferents in dorsal-root ganglia of behaving monkeys. J Neurophysiol. 1992;67:875–89.PubMedGoogle Scholar
  213. 213.
    Holmes G. The cerebellum of man. The Hughlings Jackson memorial lecture. Brain. 1939;62:1–30.CrossRefGoogle Scholar
  214. 214.
    Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm. 2007;114(10):1339–48.PubMedCrossRefGoogle Scholar
  215. 215.
    Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Mov Disord. 1992;7(2):95–109.PubMedCrossRefGoogle Scholar
  216. 216.
    Wessel K, Verleger R, Nazarenus D, Vieregge P, Kompf D. Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy. Electroencephalogr Clin Neurophysiol. 1994;92:331–41.PubMedCrossRefGoogle Scholar
  217. 217.
    Applegate LM, Louis ED. Essential tremor: mild olfactory dysfunction in a cerebellar disorder. Parkinsonism Relat Disord. 2005;11(6):399–402.PubMedCrossRefGoogle Scholar
  218. 218.
    Lisberger S. Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between. Neuron. 2010;66(4):477–91.PubMedCrossRefGoogle Scholar
  219. 219.
    Guerrasio L, Quinet J, Buttner U, Goffart L. Fastigial oculomotor region and the control of foveation during fixation. J Neurophysiol. 2010;103(4):1988–2001.PubMedCrossRefGoogle Scholar
  220. 220.
    Handel B, Their P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29(48):15126–33.PubMedCrossRefGoogle Scholar
  221. 221.
    Parsons LM, Petacchi A, Schmahmann JD, Bower JM. Pitch discrimination in cerebellar patients: evidence for a sensory deficit. Brain Res. 2009;1303:84–96.PubMedCrossRefGoogle Scholar
  222. 222.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedCrossRefGoogle Scholar
  223. 223.
    Vallbo ÅB. Afferent discharge from human muscle spindles in non-contracting muscle. Steady state impulse frequency as function of joint angle. Acta Physiol Scand. 1974;90:303–18.PubMedCrossRefGoogle Scholar
  224. 224.
    Johansson RS, Landström U, Lundström R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacement. Brain Res. 1982;244:17–25.PubMedCrossRefGoogle Scholar
  225. 225.
    Burke D, Gandevia SC, Macefield G. Responses to passive movement of receptors in joint, skin, and muscle of the human hand. J Physiol. 1988;401:347–61.Google Scholar
  226. 226.
    Edin BB. Finger joint movement sensitivity of non-cutaneous mechanoreceptor afferents in the human radial nerve. Exp Brain Res. 1990;82:417–22.PubMedCrossRefGoogle Scholar
  227. 227.
    Edin BB. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J Neurophysiol. 1992;67:1105–13.PubMedGoogle Scholar
  228. 228.
    Edin BB, Abbs JH. Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of human hand. J Neurophysiol. 1991;65:657–70.PubMedGoogle Scholar
  229. 229.
    Edin BB, Johansson N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J Physiol. 1995;487:243–51.PubMedGoogle Scholar
  230. 230.
    Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD. Manual motor performance in a deafferented man. Brain. 1982;105:515–42.PubMedCrossRefGoogle Scholar
  231. 231.
    Bard C, Fleury M, Teasdale N, Paillard J, Nougier V. Contribution of proprioception for calibrating and updating the motor space. Can J Physiol Pharmacol. 1995;73:246–54.PubMedCrossRefGoogle Scholar
  232. 232.
    Ghez C, Sainburg R. Proprioceptive control of interjoint coordination. Can J Physiol Pharmacol. 1995;73:273–84.PubMedCrossRefGoogle Scholar
  233. 233.
    Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal participants and patients without proprioception. J Neurophysiol. 1995;73:820–35.PubMedGoogle Scholar
  234. 234.
    Berlucchi G, Aglioti S. The body in the brain: neural bases of corporeal awareness. Trends Neurosci. 1997;20:560–4.PubMedCrossRefGoogle Scholar
  235. 235.
    Berti A, Bottini G, Gandola M, Pia L, Smania N, Stracciari A, et al. Shared cortical anatomy for motor awareness and motor control. Science. 2005;309:488–91.PubMedCrossRefGoogle Scholar
  236. 236.
    Committeri G, Pitzalis S, Galati G, Patria F, Pelle G, Sabatini U, et al. Neural bases of personal and extrapersonal neglect in humans. Brain. 2007;130:431–41.PubMedCrossRefGoogle Scholar
  237. 237.
    Graziano MS. Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA. 1999;96:10418–21.PubMedCrossRefGoogle Scholar
  238. 238.
    Graziano MSA, Cooke DF, Taylor CSR. Coding the location of the arm by sight. Science. 2000;290:1782–6.PubMedCrossRefGoogle Scholar
  239. 239.
    Beppu H, Suda M, Tanaka R. Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain. 1984;107:787–809.PubMedCrossRefGoogle Scholar
  240. 240.
    Liu X, Ingram HA, Palace JA, Miall RC. Dissociation of ‘on-line’ and ‘off-line’ visuomotor control of the arm by focal lesions in the cerebellum and brainstem. Neurosci Lett. 1999;264:121–4.PubMedCrossRefGoogle Scholar
  241. 241.
    Ungerleider LG, Desimone R, Galkin TW, Mishkin M. Subcortical projections of area MT in the macaque. J Comp Neurol. 1984;223:368–86.PubMedCrossRefGoogle Scholar
  242. 242.
    Schmahmann JD, Pandya DN. Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol. 1991;308:224–48.PubMedCrossRefGoogle Scholar
  243. 243.
    Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.PubMedGoogle Scholar
  244. 244.
    Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci. 2000;23:613–7.PubMedCrossRefGoogle Scholar
  245. 245.
    Murphy JT, MacKay WA, Johnson F. Responses of cerebellar cortical neurons to dynamic proprioceptive inputs from forelimb muscles. J Neurophysiol. 1973;36:711–23.PubMedGoogle Scholar
  246. 246.
    Bauswein E, Kolb FP, Leimbeck B, Rubia FJ. Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol. 1983;339:379–94.PubMedGoogle Scholar
  247. 247.
    van Kan PLE, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:74–94.PubMedGoogle Scholar
  248. 248.
    Parsons LM, Bower JM, Gao JH, Xiong J, Li J, Fox PT. Lateral cerebellar hemispheres actively support sensory acquisition and discrimination rather than motor control. Learn Mem. 1997;4:49–62.PubMedCrossRefGoogle Scholar
  249. 249.
    Miall RC, Reckess GZ. The cerebellum and the timing of coordinated eye and hand tracking. Brain Cogn. 2002;48:212–26.PubMedCrossRefGoogle Scholar
  250. 250.
    Hagura N, Oouchida Y, Aramaki Y, Okada T, Matsumura M, Sadato N, et al. Visuokinesthetic perception of hand movement is mediated by cerebro-cerebellar interaction between the left cerebellum and right parietal cortex. Cereb Cortex. 2009;19:176–86.PubMedCrossRefGoogle Scholar
  251. 251.
    Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, et al. Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol. 2005;93:1020–34.PubMedCrossRefGoogle Scholar
  252. 252.
    Sasaki K, Oka H, Kawaguchi S, Jinnai K, Yasuda T. Mossy fibre and climbing fibre responses produced in the cerebeller cortex by stimulation of the cerebral cortex in monkeys. Exp Brain Res. 1977;29:419–28.PubMedCrossRefGoogle Scholar
  253. 253.
    Middleton FA, Strick PL. Cerebellar output: motor and cognitive channels. Trends Cogn Sci. 1998;2:348–54.PubMedCrossRefGoogle Scholar
  254. 254.
    Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21:6283–91.PubMedGoogle Scholar
  255. 255.
    Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.PubMedCrossRefGoogle Scholar
  256. 256.
    Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.PubMedCrossRefGoogle Scholar
  257. 257.
    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMedCrossRefGoogle Scholar
  258. 258.
    O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2009;20:953–96.PubMedCrossRefGoogle Scholar
  259. 259.
    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.PubMedCrossRefGoogle Scholar
  260. 260.
    Rijntjes A, Büchel C, Kiebel S, Weiller C. Multiple somatotopic representations in the human cerebellum. Neuroreport. 1999;10:3653–8.PubMedCrossRefGoogle Scholar
  261. 261.
    Blouin JS, Bard C, Paillard J. Contribution of the cerebellum to self-initiated synchronized movements: a PET study. Exp Brain Res. 2003;115:63–8.Google Scholar
  262. 262.
    Gowen E, Miall RC. Differentiation between external and internal cuing: a fMRI study comparing tracing and drawing. Neuroimage. 2007;36:396–410.PubMedCrossRefGoogle Scholar
  263. 263.
    Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24:1173–81.PubMedCrossRefGoogle Scholar
  264. 264.
    Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103:3330–6.PubMedCrossRefGoogle Scholar
  265. 265.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a metaanalysis of neuroimaging studies. Neuroimage. 2008;44:489–501.PubMedCrossRefGoogle Scholar
  266. 266.
    Tracy JL, Faro SS, Mohammed FB, Pinus AB, Madi SM, Laskas JW. Cerebellar mediation of the complexity of bimanual compared to unimanual movements. Neurology. 2001;57:1862–9.PubMedCrossRefGoogle Scholar
  267. 267.
    Ramnami N, Toni I, Passingham RE, Haggard P. The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage. 2001;14:899–911.CrossRefGoogle Scholar
  268. 268.
    Thickbroom GW, Byrnes ML, Mastaglia FL. Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. Neuroimage. 2003;18:670–4.PubMedCrossRefGoogle Scholar
  269. 269.
    Habas C, Axelrad CAH, Nguyen TH, Cabanis EA. Specific neocerebellar activation during out-of-phase bimanual movements. Neuroreport. 2004;15:595–9.PubMedCrossRefGoogle Scholar
  270. 270.
    Küper M, Dimitrova A, Thürling M, Maderwald S, Roths J, Elles HG, Gizewski ER, Ladd ME, Diedrichsen J, Timmann D. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. Neuroimage. 2011;54:2612–22.PubMedCrossRefGoogle Scholar
  271. 271.
    Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2009;9:22–8.PubMedCrossRefGoogle Scholar
  272. 272.
    Chan RCK, Huang J, Din X. Dexterous movement complexity and cerebellar activation: a metaanalysis. Brain Res Rev. 2009;59:316–23.PubMedCrossRefGoogle Scholar
  273. 273.
    Witt ST, Meyerand ME, Laird AR. Functional neuroimaging correlates of finger tapping task variations: an ALE meta-analysis. Neuroimage. 2008;42(1):343–56.PubMedCrossRefGoogle Scholar
  274. 274.
    Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage. 2004;21:1416–27.PubMedCrossRefGoogle Scholar
  275. 275.
    Jäncke L, Specht K, Mirzazade S, Peters M. The effect of finger-movement speed of the dominant and subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. Neuroimage. 1999;9:497–507.PubMedCrossRefGoogle Scholar
  276. 276.
    Lehéricy S, Benali H, Van de Moortele PF, Pélégrini-Issac M, Waechter T, Ugurbil K, Doyon J. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA. 2005;102(35):12566–71.PubMedCrossRefGoogle Scholar
  277. 277.
    Meister IG, Foltys H, Gallea C, Hallett M. How the brain handles temporally uncoupled bimanual movements. Cereb Cortex. 2011;20(12):2996–3004.CrossRefGoogle Scholar
  278. 278.
    Spencer RMC, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements: an fMRI study. Neuroimage. 2007;36:378–87.PubMedCrossRefGoogle Scholar
  279. 279.
    Tanaka Y, Fujimara N, Tsuji T, Maruishi M, Muranaka H, Kasai T. Functional interactions between the cerebellum and the premotor cortex for error correction during the slow rate force production task: an fMRI study. Exp Brain Res. 2009;193(1):143–50.PubMedCrossRefGoogle Scholar
  280. 280.
    Lotze M, Halsband U. Motor imagery. J Physiol Paris. 2006;99:386–95.PubMedCrossRefGoogle Scholar
  281. 281.
    Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994;14:3775–90.PubMedGoogle Scholar
  282. 282.
    Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Underleider LG. Experience dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA. 2002;99:1017–22.PubMedCrossRefGoogle Scholar
  283. 283.
    Floyer-Lea A, Matthews PM. Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol. 2005;94:512–8.PubMedCrossRefGoogle Scholar
  284. 284.
    Okada Y, Lauritzen M, Nicholson C. MEG source models and physiology. Phys Med Biol. 1987;32(1):43–51.PubMedCrossRefGoogle Scholar
  285. 285.
    Tesche CD, Karhu J. Somatosensory evoked magnetic fields arising from sources in the human cerebellum. Brain Res. 1997;744(1):23–31.PubMedCrossRefGoogle Scholar
  286. 286.
    Ivry R. Exploring the role of the cerebellum in sensory anticipation and timing: commentary on Tesche and Karhu. Hum Brain Mapp. 2000;9(3):115–8.PubMedCrossRefGoogle Scholar
  287. 287.
    Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol. 2007;17(6):649–55.PubMedCrossRefGoogle Scholar
  288. 288.
    Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156–65.PubMedCrossRefGoogle Scholar
  289. 289.
    Wilson TW, Slason E, Hernandez OO, Asherin R, Reite ML, Teale PD, Rojas DC. Aberrant high-frequency desynchronization of cerebellar cortices in early-onset psychosis. Psychiatry Res. 2009;174(1):47–56.PubMedCrossRefGoogle Scholar
  290. 290.
    Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 1997;20(1):44–9.PubMedCrossRefGoogle Scholar
  291. 291.
    Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage. 2006;32(3):1281–9.PubMedCrossRefGoogle Scholar
  292. 292.
    Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A. The neural basis of intermittent motor control in humans. Proc Natl Acad Sci USA. 2002;99(4):2299–302.PubMedCrossRefGoogle Scholar
  293. 293.
    Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126(Pt 1):199–212.PubMedGoogle Scholar
  294. 294.
    Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D, Schnitzler A. Pathological oscillatory coupling within the human motor system in different tremor syndromes as revealed by magnetoencephalography. Neurol Clin Neurophysiol. 2004;2004:26.PubMedGoogle Scholar
  295. 295.
    Schnitzler A, Timmermann L, Gross J. Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris. 2006;99(1):3–7.PubMedCrossRefGoogle Scholar
  296. 296.
    Pollok B, Butz M, Gross J, Schnitzler A. Intercerebellar coupling contributes to bimanual coordination. J Cogn Neurosci. 2007;19(4):704–19.PubMedCrossRefGoogle Scholar
  297. 297.
    Wilson TW, Slason E, Asherin R, Kronberg E, Reite ML, Teale PD, Rojas DC. An extended motor network generates beta and gamma oscillatory perturbations during development. Brain Cogn. 2010;73(2):75–84.PubMedCrossRefGoogle Scholar
  298. 298.
    Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.PubMedCrossRefGoogle Scholar
  299. 299.
    Andreasen NC, O'Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, Watkins GL, Hichwa RD. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA. 1996;93(18):9985–90.PubMedCrossRefGoogle Scholar
  300. 300.
    Perez Velazquez JL, Barcelo F, Hung Y, Leshchenko Y, Nenadovic V, Belkas J, Raghavan V, Brian J, Garcia Dominguez L. Decreased brain coordinated activity in autism spectrum disorders during executive tasks: reduced long-range synchronization in the frontoparietal networks. Int J Psychophysiol. 2009;73(3):341–9.PubMedCrossRefGoogle Scholar
  301. 301.
    Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, Seidman LJ, Schmahmann JD, Pascual-Leone A. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.PubMedCrossRefGoogle Scholar
  302. 302.
    Martin T, Houck JM, Bish JP, Kiciæ D, Woodruff CC, Moses SN, Lee DC, Tesche CD. MEG reveals different contributions of somatomotor cortex and cerebellum to simple reaction time after temporally structured cues. Hum Brain Mapp. 2006;27(7):552–61.PubMedCrossRefGoogle Scholar
  303. 303.
    Krause V, Schnitzler A, Pollok B. Functional network interactions during sensorimotor synchronization in musicians and non-musicians. Neuroimage. 2010;52(1):245–51.PubMedCrossRefGoogle Scholar
  304. 304.
    Guggisberg AG, Dalal SS, Findlay AM, Nagarajan SS. High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making. Front Hum Neurosci. 2007;1:14.PubMedGoogle Scholar
  305. 305.
    Kessler K, Biermann-Ruben K, Jonas M, Siebner HR, Bäumer T, Münchau A, Schnitzler A. Investigating the human mirror neuron system by means of cortical synchronization during the imitation of biological movements. Neuroimage. 2006;33(1):227–38.PubMedCrossRefGoogle Scholar
  306. 306.
    Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, Nagarajan SS. Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. Neuroimage. 2008;40(4):1686–700.PubMedCrossRefGoogle Scholar
  307. 307.
    Kotini A, Mavraki E, Anninos P, Piperidou H, Prassopoulos P. Magnetoencephalographic findings in two cases of juvenile myoclonus epilepsy. Brain Topogr. 2010;23(1):41–5.PubMedCrossRefGoogle Scholar
  308. 308.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mario Manto
    • 1
    • 22
    Email author
  • James M. Bower
    • 2
  • Adriana Bastos Conforto
    • 3
    • 4
  • José M. Delgado-García
    • 5
  • Suzete Nascimento Farias da Guarda
    • 3
  • Marcus Gerwig
    • 6
  • Christophe Habas
    • 7
  • Nobuhiro Hagura
    • 8
    • 9
  • Richard B. Ivry
    • 10
  • Peter Mariën
    • 11
    • 12
  • Marco Molinari
    • 13
  • Eiichi Naito
    • 14
    • 15
  • Dennis A. Nowak
    • 16
    • 17
  • Nordeyn Oulad Ben Taib
    • 1
  • Denis Pelisson
    • 18
    • 19
  • Claudia D. Tesche
    • 20
  • Caroline Tilikete
    • 18
    • 19
    • 21
  • Dagmar Timmann
    • 6
  1. 1.Unité d‘Etude du Mouvement (UEM), FNRS, ULB ErasmeBrusselsBelgium
  2. 2.Computational BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  3. 3.Department of NeurologyClinics Hospital/São Paulo UniversitySão PauloBrazil
  4. 4.Instituto Israelita de Ensino e Pesquisa Albert EinsteinSão PauloBrazil
  5. 5.División de NeurocienciasUniversidad Pablo de OlavideSevilleSpain
  6. 6.Department of NeurologyUniversity of Duisburg-EssenEssenGermany
  7. 7.Service de NeuroImagerieCHNO des Quinze-Vingts, UPMCParisFrance
  8. 8.ATR Computational Neuroscience LaboratoriesKyotoJapan
  9. 9.Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
  10. 10.Department of PsychologyUniversity of CaliforniaBerkeleyUSA
  11. 11.Department of NeurologyZNA Middelheim General HospitalAntwerpBelgium
  12. 12.Department of NeurolinguisticsVrije Universiteit BrusselBrusselsBelgium
  13. 13.IRCCS S. Lucia FoundationRomeItaly
  14. 14.National Institute of Information and Communication Technology, Research Department 1, Kobe Advanced ICT Research Center, Biophysical ICT GroupKyotoJapan
  15. 15.ATR Cognitive Mechanisms LaboratoriesKyotoJapan
  16. 16.Neurologische Fachklinik KipfenbergKipfenbergGermany
  17. 17.Neurologische UniversitätsklinikPhilipps-Universität MarburgMarburgGermany
  18. 18.INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, IMPACT (Integrative, Multisensory, Perception, Action and Cognition) TeamLyonFrance
  19. 19.University Lyon 1LyonFrance
  20. 20.Department of PsychologyUniversity of New MexicoAlbuquerqueUSA
  21. 21.Hospices Civils de Lyon, Unité de Neuro-ophtalmologie and Service de Neurologie DHôpital NeurologiqueBronFrance
  22. 22.Unité d’Etude du Mouvement (UEM), FNRS ULB NeurologieBrusselsBelgium

Personalised recommendations