Skip to main content
Log in

Maternal Thimerosal Exposure Results in Aberrant Cerebellar Oxidative Stress, Thyroid Hormone Metabolism, and Motor Behavior in Rat Pups; Sex- and Strain-Dependent Effects

The Cerebellum Aims and scope Submit manuscript

Abstract

Methylmercury (Met-Hg) and ethylmercury (Et-Hg) are powerful toxicants with a range of harmful neurological effects in humans and animals. While Met-Hg is a recognized trigger of oxidative stress and an endocrine disruptor impacting neurodevelopment, the developmental neurotoxicity of Et-Hg, a metabolite of thimerosal (TM), has not been explored. We hypothesized that TM exposure during the perinatal period impairs central nervous system development, and specifically the cerebellum, by the mechanism involving oxidative stress. To test this, spontaneously hypertensive rats (SHR) or Sprague–Dawley (SD) rat dams were exposed to TM (200 μg/kg body weight) during pregnancy (G10–G15) and lactation (P5–P10). Male and female neonates were evaluated for auditory and motor function; cerebella were analyzed for oxidative stress and thyroid metabolism. TM exposure resulted in a delayed startle response in SD neonates and decreased motor learning in SHR male (22.6%), in SD male (29.8%), and in SD female (55.0%) neonates. TM exposure also resulted in a significant increase in cerebellar levels of the oxidative stress marker 3-nitrotyrosine in SHR female (35.1%) and SD male (14.0%) neonates. The activity of cerebellar type 2 deiodinase, responsible for local intra-brain conversion of thyroxine to the active hormone, 3′,3,5-triiodothyronine (T3), was significantly decreased in TM-exposed SHR male (60.9%) pups. This coincided with an increased (47.0%) expression of a gene negatively regulated by T3, Odf4 suggesting local intracerebellar T3 deficiency. Our data thus demonstrate a negative neurodevelopmental impact of perinatal TM exposure which appears to be both strain- and sex-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bokara KK, Brown E, McCormick R, Yallapragada PR, Rajanna S, Bettaiya R. Lead-induced increase in antioxidant enzymes and lipid peroxidation products in developing rat brain. Biometals. 2008;21:9–16.

    Article  PubMed  CAS  Google Scholar 

  2. Windham GC, Zhang L, Gunier R, Croen LA, Grether JK. Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay Area. Environ Health Perspect. 2006;114:1438–44.

    Article  PubMed  CAS  Google Scholar 

  3. Palmer RF, Blanchard S, Wood R. Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health Place. 2009;15:18–24.

    Article  PubMed  Google Scholar 

  4. Orct T, Blanusa M, Lazarus M, Varnai VM, Kostial K. Comparison of organic and inorganic mercury distribution in suckling rat. J Appl Toxicol. 2006;26:536–9.

    Article  PubMed  CAS  Google Scholar 

  5. Nordenhäll K, Dock L, Vahter M. Transplacental and lactational exposure to mercury in hamster pups after maternal administration of methyl mercury in late gestation. Pharmacol Toxicol. 1995;77:130–5.

    Article  PubMed  Google Scholar 

  6. Oskarsson A, Palminger Hallén I, Sundberg J. Exposure to toxic elements via breast milk. Analyst. 1995;120:765–70.

    Article  PubMed  CAS  Google Scholar 

  7. Glaser V, Nazari EM, Muller YM, Feksa L, Wannmacher CM, Rocha JB, et al. Effects of inorganic selenium administration in methylmercury-induced neurotoxicity in mouse cerebral cortex. Int J Dev Neurosci. 2010;28:631–7.

    Article  PubMed  CAS  Google Scholar 

  8. Yin ZZ, Lee E, Ni M, Jiang H, Milatovic D, Rongzhu L, et al. Methylmercury-induced alterations in astrocyte function are attenuated by ebselen. Neurotoxicology. 2011;32(3):291–9.

    Article  PubMed  CAS  Google Scholar 

  9. Heath JA, Frederick PC. Relationship among mercury concentrations, hormones, and nesting effort of white Ibises (Eudocimus albus) in the Florida Everglades. Auk. 2005;122:255–67.

    Article  Google Scholar 

  10. Tan SW, Meiller JC, Mahaffey KR. The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol. 2009;39:228–69.

    Article  PubMed  CAS  Google Scholar 

  11. Chang JY, Tsai PF. Prevention of methylmercury-induced mitochondrial depolarization, glutathione depletion and cell death by 15-deoxy-delta-12,14-prostglandin J(2). Neurotoxicology. 2008;29:1054–61.

    Article  PubMed  CAS  Google Scholar 

  12. Barcelos GR, Grotto D, Serpeloni JM, Angeli JP, Rocha BA, et al. Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats. Arch Toxicol. 2011;85(9):1151–7.

    Article  PubMed  CAS  Google Scholar 

  13. Stringari J, Nunes AK, Franco JL, Bohrer D, Garcia SC, Dafre AL, et al. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol. 2008;227:147–54.

    Article  PubMed  CAS  Google Scholar 

  14. WHO. The Global Advisory Committee on Vaccine Safety, Statement on thiomersal. http://www.who.int/vaccine_safety/topics/thiomersal/statement_jul2006/en/index.html; 2006.

  15. Maier SE, Cramer JA, West JR, Sohrabji F. Alcohol exposure during the first two trimesters equivalent alters granule cell number and neurotropin expression in the developing rat olfactory bulb. J Neurobiol. 1999;41:414–23.

    Article  PubMed  CAS  Google Scholar 

  16. Bellinger FP, Bedi KS, Wilson P, Wilce PA. Ethanol exposure during the third trimester equivalent results in long-lasting decreased synaptic efficacy but not plasticity in the CA1 region of the rat hippocampus. Synapse. 1999;31:51–8.

    Article  PubMed  CAS  Google Scholar 

  17. Silva JE, Leonard JL, Crantz FR, Larsen PR. Evidence for two tissue-specific pathways for in vivo thyroxine 5′-deiodination in the rat. J Clin Invest. 1982;69:1176–84.

    Google Scholar 

  18. Nguon K, Baxter MG, Sajdel-Sulkowska EM. Perinatal exposure to polychlorinated biphenyls differentially affects cerebellar development and motor functions in male and female rat neonates. Cerebellum. 2005;4:112–22.

    Article  PubMed  CAS  Google Scholar 

  19. Sajdel-Sulkowska EM, Nguon K, Sulkowski ZL, Rosen GD, Baxter MG. Purkinje cell loss accompanies motor impairment in rats developing at altered gravity. Neuroreport. 2005;16:2037–40.

    Article  PubMed  Google Scholar 

  20. Sajdel-Sulkowska EM, Lipinski B, Windom H, Audhya T, McGinnis W. Oxidative stress in autism: cerebellar 3-nitrotyrosine levels. Am J Biochem Biotechnol. 2008;4:73–84.

    Article  CAS  Google Scholar 

  21. Zavacki AM, Ying H, Christoffolete MA, Aerts G, So E, Harney JW, et al. Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology. 2005;146:1568–75.

    Article  PubMed  CAS  Google Scholar 

  22. Eccles CU, Annau Z. Prenatal methyl mercury exposure: I. Alterations in neonatal activity. Neurobehav Tocicol Teratol. 1982a;4:371–6.

    CAS  Google Scholar 

  23. Eccles CU, Annau Z. Prenatal methyl mercury exposure: II. Alterations in learning and psychotropic drug sensitivity in adult offspring. Neurobehav Tocicol Teratol. 1982;4:377–82.

    CAS  Google Scholar 

  24. Morte B, Ceballos A, Diez D, Grijota-Martinez C, Dumitrescu AM, Di Cosmo C, et al. Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice. Endocrinology. 2010;151:2381–7.

    Article  PubMed  CAS  Google Scholar 

  25. Zieminska E, Toczylowska B, Stafiej A, Lazarewicz JW. Low molecular weight thiols reduce thimerosal neurotoxicity in vitro: modulation by proteins. Toxicology. 2010;276:154–63.

    Article  PubMed  CAS  Google Scholar 

  26. Gardner RM, Nyland JF, Silbergeld EK. Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicol Lett. 2010;198:182–90.

    Article  PubMed  CAS  Google Scholar 

  27. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury—current exposures and clinical manifestations. N Eng J Med. 2003;349:1731–7.

    Article  CAS  Google Scholar 

  28. Gao Y, Yan CH, Tian Y, Xie HF, Zhou X, Yu XD, et al. Prenatal exposure to mercury and neurobehavioral development of neonates in Zhoushan City, China. Environ Res. 2007;105:390–9.

    Article  PubMed  CAS  Google Scholar 

  29. Debes F, Budtz-Jørgensen E, Weihe P, White RF, Grandjean P. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol. 2006;28:363–75.

    Article  PubMed  CAS  Google Scholar 

  30. Kuhnert PM, Kuhnert BR, Erhard P. Comparison of mercury levels in maternal blood, fetal cord blood, and placental tissue. Am J Obstet Gynecol. 1981;139:209–13.

    PubMed  CAS  Google Scholar 

  31. Montgomery KS, Mackey J, Thuett K, Ginestra S, Bizon JL, Abbott LC. Chronic, low-dose prenatal exposure to methylmercury impairs motor and mnemonic function in adult C57/B6 mice. Behav Brain Res. 2008;191:55–61.

    Article  PubMed  CAS  Google Scholar 

  32. Morgan DL, Price HC, Fernando R, Chanda SM, O’Connor RW, Barone Jr SS, et al. Gestational mercury vapor exposure and diet contribute to mercury accumulation in neonatal rats. Environ Health Perspect. 2006;114:735–9.

    Article  PubMed  CAS  Google Scholar 

  33. Zareba G, Cernichiari E, Hojo R, Nitt SM, Weiss B, Mumtaz MM, et al. Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury. J Appl Toxicol. 2007;27:511–8.

    Article  PubMed  CAS  Google Scholar 

  34. Sakamoto M, Kakita A, de Oliveira RB, Sheng Pan H, Takahashi H. Dose-dependent effects of methylmercury administered during neonatal brain spurt in rats. Brain Res Dev Brain Res. 2004;152:171–6.

    Article  PubMed  CAS  Google Scholar 

  35. Kodavanti UP, Schladweiler MC, Ledbetter AD, Ortuno RV, Suffia M, Evansky P, et al. The spontaneously hypertensive rat: an experimental model of sulfur dioxide-induced airways disease. Toxicol Sci. 2006;94:193–205.

    Article  PubMed  CAS  Google Scholar 

  36. Wang X, Desai K, Juurlink BH, de Champlain J, Wu L. Gender-related differences in advanced glycation endproducts, oxidative stress markers and nitric oxide synthases in rats. Kidney Int. 2006;69:281–7.

    Article  PubMed  CAS  Google Scholar 

  37. Saiki R, Okazaki M, Iwai S, Kumai T, Kobayashi S, Oguchi K. Effects of pioglitazone on increases in visceral fat accumulation and oxidative stress in spontaneously hypertensive hyperlipidemic rats fed a high-fat diet and sucrose solution. J Pharmacol Sci. 2007;105:157–67.

    Article  PubMed  CAS  Google Scholar 

  38. Beyrouty P, Stamler CJ, Liu JN, Loua KM, Kubow S, Chan HM. Effects of prenatal methylmercury exposure on brain monoamine oxidase activity and neurobehaviour of rats. Neurotocicol Teratol. 2006;28:251–9.

    Article  CAS  Google Scholar 

  39. Roegge CS, Morris JR, Villareal S, Wang VC, Powers BE, Klintsova AY, et al. Purkinje cell and cerebellar effects following developmental exposure to PCBs and/or MeHg. Neurotocicol Teratol. 2006;28:74–85.

    Article  CAS  Google Scholar 

  40. Ueha-Ishibashi T, Oyama Y, Nakao H, Umebayashi C, Nishizaki Y, Tatsuishi T, et al. Effect of thimerosal, a preservative in vaccines, on intracellular Ca2+ concentration of rat cerebellar neurons. Toxicology. 2004;195:77–84.

    Article  PubMed  CAS  Google Scholar 

  41. Linares AF, Loikkanen J, Jorge MF, Soria RB, Novoa AV. Antioxidant and neuroprotective activity of the extract from the seaweed, Halimeda incrassata (Ellis) Lamouroux, against in vitro and in vivo toxicity induced by methyl-mercury. Vet Hum Toxicol. 2004;46:1–5.

    PubMed  Google Scholar 

  42. Kaur P, Aschner M, Syversen T. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology. 2006;27:492–500.

    Article  PubMed  CAS  Google Scholar 

  43. Rush T, Hjelmhaug J, Lobner D. Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture. Neurotoxicology. 2009;30:47–51.

    Article  PubMed  CAS  Google Scholar 

  44. Vicente E, Boer M, Netto C, Fochesatto C, Dalmaz C, Rodrigues Siqueira I, et al. Hippocampal antioxidant system in neonates from methylmercury-intoxicated rats. Neurotoxicol Teratol. 2004;26:817–23.

    Article  PubMed  CAS  Google Scholar 

  45. Sajdel-Sulkowska EM. Oxidative stress and neurotrophin signaling in autism. In: Chauhan A, Chauhan V, Brown WT, editors. Autism: oxidative stress, inflammation and immune abnormalities. Boca Raton, FL: CRC; 2010. p. 47–60.

    Google Scholar 

  46. Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med. 2002;32:797–803.

    Article  PubMed  CAS  Google Scholar 

  47. Neumann H, Hazen L, Weinstein J, Mehl RA, Chin JW. Genetically encoding protein oxidative damage. J Am Chem Soc. 2008;130:4028–33.

    Article  PubMed  CAS  Google Scholar 

  48. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938.

    Article  PubMed  CAS  Google Scholar 

  49. Galton VA, Wood ET, St Germain EA, Withrow CA, Aldrich G, St Germain GM, et al. Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology. 2007;148:3080.

    Article  PubMed  CAS  Google Scholar 

  50. Goldey ES, Kehn LS, Rehnberg GL, Crofton KM. Effects of developmental hypothyroidism on auditory and motor function in the rat. Toxicol Appl Pharmacol. 1995;135:67–76.

    Article  PubMed  CAS  Google Scholar 

  51. Ng L, Goodyear RJ, Woods CA, Schneider MJ, Diamond E, Richardson GP, et al. Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci U S A. 2004;101:3474–9.

    Article  PubMed  CAS  Google Scholar 

  52. Soldin OP, O’Mara DM, Aschner M. Thyroid hormones and methylmercury toxicity. Biol Trace Elem Res. 2008;126:1–12.

    Article  PubMed  CAS  Google Scholar 

  53. Watanabe C. Selenium deficiency and brain functions: the significance for methylmercury toxicity. Nippon Eiseigaku Zasshi. 2001;55:581–9.

    Article  PubMed  CAS  Google Scholar 

  54. Lamirand A, Pallud-Mothré S, Ramaugé M, Pierre M, Courtin F. Oxidative stress regulates type 3 deiodinase and type 2 deiodinase in cultured rat astrocytes. Endocrinology. 2008;149:3713–21.

    Article  PubMed  CAS  Google Scholar 

  55. Kim CY, Watanabe C, Satoh H. Effects of buthionine sulfoximine (BSO) on mercury distribution after Hg(o) exposure. Toxicology. 1995;98:67–72.

    Article  PubMed  CAS  Google Scholar 

  56. James SJ, Slikker 3rd W, Melnyk S, New E, Pogribna M, Jernigan S. Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology. 2005;26:1–8.

    Article  PubMed  CAS  Google Scholar 

  57. Goswami A, Rosenberg I. Effects of glutathione on iodothyronine 5′-deiodinase activity. Endocrinology. 1988;123:192–202.

    Article  PubMed  CAS  Google Scholar 

  58. Croteau W, Bodwell JE, Richardson JM, St Germain DL. Conserved cysteines in the type 1 deiodinase selenoprotein are not essential for catalytic activity. J Biol Chem. 1998;273:25230–6.

    Article  PubMed  CAS  Google Scholar 

  59. Goemann IM, Gereben B, Harney JW, Zhu B, Maia AL, Larsen PR. Substitution of serine for proline in the active center of type 2 iodothyronine deiodinase substantially alters its in vitro biochemical properties with dithiothreitol but not its function in intact cells. Endocrinology. 2010;151:821–9.

    Article  PubMed  CAS  Google Scholar 

  60. Dasgupta A, Das S, Sarkar PK. Thyroid hormone promotes glutathione synthesis in astrocytes by up regulation of glutamate cysteine ligase through differential stimulation of its catalytic and modulator subunit mRNAs. Free Radic Biol Med. 2007;42:617–26.

    Article  PubMed  CAS  Google Scholar 

  61. Sobutskii MP, Kovan’ko EG, Liutinskii SI, Ivanov SD. Effect of age and gender on genotoxic and biochemical indexes in animal blood after low doses of radiation-mercury exposure. Adv Gerontol. 2007;20:91–6.

    PubMed  CAS  Google Scholar 

  62. Olczak M, Duszczyk M, Mierzejewski P, Majewska MD. Neonatal administration of a vaccine preservative, thimerosal, produces lasting impairment of nociception and apparent activation of opioid system in rats. Brain Res. 2009;1301:143–51.

    Article  PubMed  CAS  Google Scholar 

  63. Holmes E, Nicholls AW, Lindon JC, Connor SC, Connelly JC, Haselden JN, et al. Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem Res Toxicol. 2000;13:471–8.

    Article  PubMed  CAS  Google Scholar 

  64. Gundacker C, Gencik M, Hengstschläger M. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutat Res. 2010;705:130–40.

    Article  PubMed  CAS  Google Scholar 

  65. Ballerio R, Gianazza E, Mussoni L, Miller I, Gelosa P, Guerrini U, et al. Gender differences in endothelial function and inflammatory markers along the occurrence of pathological events in stroke-prone rats. Exp Mol Pathol. 2007;82:33–41.

    Article  PubMed  CAS  Google Scholar 

  66. Agnish ND, Keller KA. The rationale for culling of rodent litters. Fundam Appl Toxicol. 1997;38:2–6.

    Article  PubMed  CAS  Google Scholar 

  67. Palmer AK, Ulbrich BC. The cult of culling. Fundam Appl Toxicol. 1997;38:7–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Mercury as a Global Hazard SGIG for the grant awarded by the College of William and Mary to Z.L. Sulkowski, the Autism Research Institute and SafeMinds for grants awarded to Dr. Sajdel-Sulkowska, and the NIDDK-DK76117 grant awarded to A.M. Zavacki. We would also like to thank Puja Parekh of the College of William for participating in the initial experiments and Ming Xu, Dept. Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi Gunma, Japan, for initial tissue analysis. We also acknowledge the following Sponsored Research Staff members at Brigham and Women’s Hospital: Amrutha E. Mathew, Pooja Mathew and Ashesh Shresta for RNA preparation, and Dr. Alaptagin Khan for PCR primer validation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Sajdel-Sulkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulkowski, Z.L., Chen, T., Midha, S. et al. Maternal Thimerosal Exposure Results in Aberrant Cerebellar Oxidative Stress, Thyroid Hormone Metabolism, and Motor Behavior in Rat Pups; Sex- and Strain-Dependent Effects. Cerebellum 11, 575–586 (2012). https://doi.org/10.1007/s12311-011-0319-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0319-5

Keywords

Navigation