Advertisement

The Cerebellum

, Volume 11, Issue 2, pp 366–383 | Cite as

Frontal Lobe and Posterior Parietal Contributions to the Cortico-cerebellar System

  • Narender Ramnani
Article

Abstract

Our growing understanding of how cerebral cortical areas communicate with the cerebellum in primates has enriched our understanding of the data that cerebellar circuits can access, and the neocortical areas that cerebellar activity can influence. The cerebellum is part of some large-scale networks involving several parts of the neocortex including association areas in the frontal lobe and the posterior parietal cortex that are known for their contributions to higher cognitive function. Understanding their connections with the cerebellum informs the debates around the role of the cerebellum in higher cognitive functions because they provide mechanisms through which association areas and the cerebellum can influence each others' operations. In recent years, evidence from connectional anatomy and human neuroimaging have comprehensively overturned the view that the cerebellum contributes only to motor control. The aim of this review is to examine our changing perspectives on the nature of cortico-cerebellar anatomy and the ways in which it continues to shape our views on its contributions to function. The review considers the anatomical connectivity of the cerebellar cortex with frontal lobe areas and the posterior parietal cortex. It will first focus on the anatomical organisation of these circuits in non-human primates before discussing new findings about this system in the human brain. It has been suggested that in non-human primates “although there is a modest input from medial prefrontal cortex, there is very little or none from the more lateral prefrontal areas” [33]. This review discusses anatomical investigations that challenge this claim. It also attempts to dispel the misconception that prefrontal projections to the cerebellum are from areas concerned only with the kinematic control of eye movements. Finally, I argue that our revised understanding of anatomy compels us to reconsider conventional views of how these systems operate in the human brain.

Keywords

Prefrontal cortex Frontal lobe Posterior parietal cortex Evolution Cognitive Motor control 

References

  1. 1.
    Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27:10659–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Amiez C, Petrides M. Anatomical organization of the eye fields in the human and non-human primate frontal cortex. Prog Neurobiol. 2009;89:220–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Andersen RA, Buneo CA. Intentional maps in posterior parietal cortex. Annu Rev Neurosci. 2002;25:189–220.PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen RA, Cui H. Intention, action planning, and decision making in parietal–frontal circuits. Neuron. 2009;63:568–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Angevine JB, Mancall EL, Yakolev PI. Terminology: cerebellar nomenclature. In: The human cerebellum: an atlas of gross topography in serial sections. London: J. & A. Churchill Ltd; 1961.Google Scholar
  6. 6.
    Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.PubMedCrossRefGoogle Scholar
  7. 7.
    Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10:670–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 1983;286:237–65.PubMedGoogle Scholar
  9. 9.
    Badre D, D’Esposito M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci. 2009;10:659–69.PubMedCrossRefGoogle Scholar
  10. 10.
    Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49:2045–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. Neuroimage. 2008;43:388–98.PubMedCrossRefGoogle Scholar
  12. 12.
    Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. J Neurosci. 2011;31:2305–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Beck E. The origin, course and termination of the prefronto-pontine tract in the human brain. Brain. 1950;73:368–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6:750–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Brodal A. The cerebellum. In: Neurological anatomy in relation to clinical medicine. New York, Oxford: Oxford University Press; 1981. pp. 312–9Google Scholar
  16. 16.
    Brodal P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain. 1978;101:251–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Brodal P. Principles of organization of the monkey corticopontine projection. Brain Res. 1978;148:214–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Bunge SA. How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn Affect Behav Neurosci. 2004;4:564–79.PubMedCrossRefGoogle Scholar
  19. 19.
    Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV. Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci. 2006;26:3697–712.PubMedCrossRefGoogle Scholar
  20. 20.
    Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21:6283–91.PubMedGoogle Scholar
  21. 21.
    Coe B, Tomihara K, Matsuzawa M, Hikosaka O. Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J Neurosci. 2002;22:5081–90.PubMedGoogle Scholar
  22. 22.
    Cui H, Andersen RA. Posterior parietal cortex encodes autonomously selected motor plans. Neuron. 2007;56:552–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Culham JC, Kanwisher NG. Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol. 2001;11:157–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Deco, G, Jirsa, VK, McIntosh, AR. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci. 2011;12:43–56.Google Scholar
  25. 25.
    Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118(Pt 1):279–306.PubMedCrossRefGoogle Scholar
  26. 26.
    Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2009;1307:63–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Dow RS. Cerebellar action potentials in response to stimulation of the cerebral cortex in monkeys and cats. J Neurophysiol. 1942;5:121–36.Google Scholar
  28. 28.
    Dum RP, Li C, Strick PL. Motor and nonmotor domains in the monkey dentate. Ann NY Acad Sci. 2002;978:289–301.PubMedCrossRefGoogle Scholar
  29. 29.
    Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Evarts EV, Thach WT. Motor mechanisms of the CNS: cerebrocerebellar interrelations. Annu Rev Physiol. 1969;31:451–98.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferrera VP, Yanike M, Cassanello C. Frontal eye field neurons signal changes in decision criteria. Nat Neurosci. 2009;12:1458–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Ferrier D, Turner WA. An experimental research upon cerebro-cortical afferent and efferent tracts. J Anat Physiol. 1897;31:627–9.PubMedGoogle Scholar
  33. 33.
    Glickstein M. Thinking about the cerebellum. Brain 2006;129: 288–92.Google Scholar
  34. 34.
    Glickstein M, Doron K. Cerebellum: connections and functions. Cerebellum. 2008;7:589–94.PubMedCrossRefGoogle Scholar
  35. 35.
    Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol. 1994;349:51–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Glickstein M, May 3rd JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235:343–59.PubMedCrossRefGoogle Scholar
  37. 37.
    Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.Google Scholar
  38. 38.
    Gottlieb J. From thought to action: the parietal cortex as a bridge between perception, action, and cognition. Neuron. 2007;53:9–16.PubMedCrossRefGoogle Scholar
  39. 39.
    Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Hamani C, Mayberg H, Snyder B, Giacobbe P, Kennedy S, Lozano AM. Deep brain stimulation of the subcallosal cingulate gyrus for depression: anatomical location of active contacts in clinical responders and a suggested guideline for targeting. J Neurosurg. 2009;111:1209–15.PubMedCrossRefGoogle Scholar
  41. 41.
    He SQ, Dum RP, Strick PL. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci. 1995;15:3284–306.PubMedGoogle Scholar
  42. 42.
    Holloway R. Evolution of the human brain. In: Lock A, Peter CR, editors. Handbook of human symbolic evolution. Malden: Blackwell Publishers Inc; 1999. p. 74–125.Google Scholar
  43. 43.
    Jones DK. Studying connections in the living human brain with diffusion MRI. Cortex. 2008;44:936–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.PubMedGoogle Scholar
  45. 45.
    Klein JT, Deaner RO, Platt ML. Neural correlates of social target value in macaque parietal cortex. Curr Biol. 2008;18:419–24.PubMedCrossRefGoogle Scholar
  46. 46.
    Koechlin E, Ody C, Kouneiher F. The architecture of cognitive control in the human prefrontal cortex. Science. 2003;302:1181–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Kuypers HGJM, Ugolini G. Viruses as transneuronal tracers. Trends Neurosci. 1990;13:71–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Larsell O. Comparative anatomy and histology of the cerebellum from monotremes through apes. Minneapolis: University of Minnesota Press; 1970.Google Scholar
  50. 50.
    Larsell O, Jansen O. The comparative anatomy and histology of the cerebellum: the human cerebellum, cerebellar connections and cerebellar cortex. Minneapolis: The University of Minnesota Press; 1972.Google Scholar
  51. 51.
    Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4:469–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.PubMedCrossRefGoogle Scholar
  53. 53.
    Levin PM. The efferent fibres of the frontal lobe of the monkey, Macaca mulatta. J Comp Neurol. 1936;63:369–419.CrossRefGoogle Scholar
  54. 54.
    Lewis JW, Van Essen DC. J Com Neurol. 2000;428:79–111.Google Scholar
  55. 55.
    Lu X, Miyachi S, Ito Y, Nambu A, Takada M. Topographic distribution of output neurons in cerebellar nuclei and cortex to somatotopic map of primary motor cortex. Eur J Neurosci. 2007;25:2374–82.PubMedCrossRefGoogle Scholar
  56. 56.
    Lynch JC, Hoover JE, Strick PL. Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res. 1994;100:181–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Matano S. Brief communication: proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. Am J Phys Anthropol. 2001;114:163–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.PubMedGoogle Scholar
  60. 60.
    Middleton FA, Strick PL. Cerebellar output channels. Int Rev Neurobiol. 1997;41:61–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Miller EK. The prefrontal cortex and cognitive control. Nat Rev Neurosci. 2000;1:59–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.PubMedCrossRefGoogle Scholar
  63. 63.
    Miller EK, Freedman DJ, Wallis JD. The prefrontal cortex: categories, concepts and cognition. Philos Trans R Soc Lond B Biol Sci. 2002;357:1123–36.PubMedCrossRefGoogle Scholar
  64. 64.
    O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2009;20:953–65.PubMedCrossRefGoogle Scholar
  65. 65.
    Ohara S, Inoue K, Witter M, Iijima T. Untangling neural networks with dual retrograde transsynaptic viral infection. Front Neurosci. 2009;3:344–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Orban GA, Van Essen D, Vanduffel W. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci. 2004;8:315–24.PubMedCrossRefGoogle Scholar
  67. 67.
    Orioli PJ, Strick PL. Cerebellar connections with the motor cortex and the arcuate premotor area: an analysis employing retrograde transneuronal transport of WGA-HRP. J Comp Neurol. 1989;288:612–26.PubMedCrossRefGoogle Scholar
  68. 68.
    Passingham RE, Stephan KE, Kotter R. The anatomical basis of functional localization in the cortex. Nat Rev Neurosci. 2002;3:606–16.PubMedGoogle Scholar
  69. 69.
    Platt ML, Glimcher PW. Neural correlates of decision variables in parietal cortex. Nature. 1999;400:233–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Petrides M, Pandya DN. Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller, F., Grafman, J. (Eds.), Handbook of Neuropsychology. Elsevier, Amsterdam; 1994. pp. 17–58.Google Scholar
  71. 71.
    Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20:214–28.PubMedCrossRefGoogle Scholar
  72. 72.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Ramnani N, Owen AM. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci. 2004;5:184–94.PubMedCrossRefGoogle Scholar
  75. 75.
    Rorie AE, Gao J, McClelland JL, Newsome WT. Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PLoS One.2011;5: e9308 (in press)Google Scholar
  76. 76.
    Rutishauser F. Experimenteller Beitrage zur Stabkranzfaserung im Frontalhirn des Affen. Monatschrift fur Psychiatrie und Neurologie. 1899;5:161–79.CrossRefGoogle Scholar
  77. 77.
    Schall JD. The neural selection and control of saccades by the frontal eye field. Philos Trans R Soc Lond B Biol Sci. 2002;357:1073–82.PubMedCrossRefGoogle Scholar
  78. 78.
    Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289:53–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Schmahmann JD, Pandya DN. Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol. 1991;308:224–48.PubMedCrossRefGoogle Scholar
  80. 80.
    Schmahmann JD, Pandya DN. Course of the fiber pathways to pons from parasensory association areas in the rhesus monkey. J Comp Neurol. 1992;326:159–79.PubMedCrossRefGoogle Scholar
  81. 81.
    Schmahmann JD, Pandya DN. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol. 1993;337:94–112.PubMedCrossRefGoogle Scholar
  82. 82.
    Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199:175–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17:438–58.PubMedGoogle Scholar
  84. 84.
    Schmahmann JD, Rosene DL, Pandya DN. Motor projections to the basis pontis in rhesus monkey. J Comp Neurol. 2004;478:248–68.PubMedCrossRefGoogle Scholar
  85. 85.
    Seo H, Barraclough DJ, Lee D. Lateral intraparietal cortex and reinforcement learning during a mixed-strategy game. J Neurosci. 2009;29:7278–89.PubMedCrossRefGoogle Scholar
  86. 86.
    Snyder LH, Batista AP, Andersen RA. Intention-related activity in the posterior parietal cortex: a review. Vis Res. 2000;40:1433–41.PubMedCrossRefGoogle Scholar
  87. 87.
    Streidter GF. Evolutionary changes in brain region size. In: Principles of brain evolution. Sunderland, MA: Sinauer Associates; 2005.Google Scholar
  88. 88.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Sultan F, Hamodeh S, Baizer JS. The human dentate nucleus: a complex shape untangled. Neuroscience. 2010;167:965–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Sunderland S. The projection of the cerebral cortex on the pons and cerebellum in the macaque monkey. J Anat. 1940;74(201–26):1.PubMedGoogle Scholar
  91. 91.
    Tehovnik EJ, Sommer MA, Chou IH, Slocum WM, Schiller PH. Eye fields in the frontal lobes of primates. Brain Res Brain Res Rev. 2000;32:413–48.PubMedCrossRefGoogle Scholar
  92. 92.
    Tsujimoto S, Genovesio A, Wise SP. Evaluating self-generated decisions in frontal pole cortex of monkeys. Nat Neurosci. 2010;13(1):120–26.Google Scholar
  93. 93.
    Ugolini G, Kuypers HGJM. Collaterals of corticospinal and pyramidal fibers to the pontine gray demonstrated by a new application of the fluorescent fiber labeling technique. Brain Res. 1986;365:211–27.PubMedCrossRefGoogle Scholar
  94. 94.
    Vogt BA, Pandya DN. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol. 1987. 262(2):271-89.Google Scholar
  95. 95.
    Walker AE. A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol. 1940;73:59–86.Google Scholar
  96. 96.
    Wise SP. The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci. 1985;8:1–19Google Scholar
  97. 97.
    Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.PubMedCrossRefGoogle Scholar
  98. 98.
    Yacoub E, Harel N, Ugurbil K. High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA. 2008;105:10607–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PsychologyRoyal Holloway University of LondonEghamUK

Personalised recommendations