Skip to main content
Log in

Learning Stimulus Intervals—Adaptive Timing of Conditioned Purkinje Cell Responses

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Classical conditioning of motor responses, such as the eyeblink response, is an experimental model of associative learning and of adaptive timing of movements. A conditioned blink will have its maximum amplitude near the expected onset of the unconditioned blink-eliciting stimulus and it adapts to changes in the interval between the conditioned and unconditioned stimuli. Previous studies have shown that an eyeblink conditioning protocol can make cerebellar Purkinje cells learn to pause in response to the conditioned stimulus. According to the cerebellar cortical conditioning model, this conditioned Purkinje cell response drives the overt blink. If so, the model predicts that the temporal properties of the Purkinje cell response reflect the overt behaviour. To test this prediction, in vivo recordings of Purkinje cell activity were performed in decerebrate ferrets during conditioning, using direct stimulation of cerebellar mossy and climbing fibre afferents as conditioned and unconditioned stimuli. The results show that Purkinje cells not only develop a change in responsiveness to the conditioned stimulus. They also learn a particular temporal response profile where the timing, not only of onset and maximum but also of offset, is determined by the temporal interval between the conditioned and unconditioned stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kehoe EJ, Macrae M. Fundamental behavioral methods and findings in classical conditioning. In: Moore JW, editor. A neuroscientist’s guide to classical conditioning. New York: Springer; 2002. p. 171–231.

    Chapter  Google Scholar 

  2. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    Article  PubMed  CAS  Google Scholar 

  3. Ivry R. Cerebellar timing systems. In: Schmahmann JD, editor. The cerebellum and cognition. New York: Academic; 1997. p. 555–73.

    Google Scholar 

  4. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14(2):225–32.

    Article  PubMed  CAS  Google Scholar 

  5. McCormick DA, Thompson RF. Cerebellum: essential involvement in the classically conditioned eyelid response. Science. 1984;223(4633):296–9.

    Article  PubMed  CAS  Google Scholar 

  6. Hesslow G, Yeo CH. The functional anatomy of skeletal conditioning. In: Moore JW, editor. A neuroscientist’s guide to classical conditioning. New York: Springer; 2002. p. 86–146.

    Chapter  Google Scholar 

  7. Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;10(6):427–55.

    Article  PubMed  Google Scholar 

  8. Thompson RF, Steinmetz JE. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience. 2009;162(3):732–55.

    Article  PubMed  CAS  Google Scholar 

  9. Jirenhed DA, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci. 2007;27(10):2493–502.

    Article  PubMed  CAS  Google Scholar 

  10. Yeo CH, Hesslow G. Cerebellum and conditioned reflexes. Trends Cogn Sci. 1998;2(9):322–30.

    Article  PubMed  CAS  Google Scholar 

  11. Kotani S, Kawahara S, Kirino Y. Purkinje cell activity during learning a new timing in classical eyeblink conditioning. Brain Res. 2003;994(2):193–202.

    Article  PubMed  CAS  Google Scholar 

  12. Ekerot CF, Gustavsson P, Oscarsson O, Schouenborg J. Climbing fibres projecting to cat cerebellar anterior lobe activated by cutaneous A and C fibres. J Physiol Lond. 1987;386:529–38.

    PubMed  CAS  Google Scholar 

  13. Simpson JI, Wylie DR, De Zeeuw CI. On climbing fiber signals and their consequences. Behav Brain Sci. 1996;19:384–98.

    Article  Google Scholar 

  14. Maruta J, Hensbroek RA, Simpson JI. Intraburst and interburst signaling by climbing fibers. J Neurosci. 2007;27(42):11263–70.

    Article  PubMed  CAS  Google Scholar 

  15. Hesslow G. Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J Physiol Lond. 1994;476(2):229–44.

    PubMed  CAS  Google Scholar 

  16. Hesslow G. Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat. J Physiol Lond. 1994;476(2):245–56.

    PubMed  CAS  Google Scholar 

  17. Kehoe EJ. Extension of the CS past the US can facilitate conditioning of the rabbit’s nictitating membrane response. Behav Processes. 2000;50(2–3):155–64.

    Article  PubMed  Google Scholar 

  18. Gormezano I, Moore JW. Classical conditioning. In: Marx MH, editor. Learning: processes. New York: Macmillan; 1969.

    Google Scholar 

  19. Lepora NF, Mavritsaki E, Porrill J, Yeo CH, Evinger C, Dean P. Evidence from retractor bulbi EMG for linearized motor control of conditioned nictitating membrane responses. J Neurophysiol. 2007;98(4):2074–88.

    Article  PubMed  CAS  Google Scholar 

  20. Kehoe EJ, Joscelyne A. Temporally specific extinction of conditioned responses in the rabbit (Oryctolagus cuniculus) nictitating membrane preparation. Behav Neurosci. 2005;119:1011–22.

    Article  PubMed  Google Scholar 

  21. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.

    Article  PubMed  CAS  Google Scholar 

  22. Kehoe EJ, Ludvig EA, Sutton RS. Timing in trace conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus): scalar, nonscalar, and adaptive features. Learn Mem. 2010;17(12):600–4.

    Article  PubMed  Google Scholar 

  23. Millenson JR, Kehoe EJ, Gormezano I. Classical conditioning of the rabbit’s nictitating membrane response under fixed and mixed CS–US intervals. Learn Motiv. 1977;8:351–66.

    Article  Google Scholar 

  24. Hoehler FK, Leonard DW. Double responding in classical nictitating membrane conditioning with single-CS dual-ISI training. Pavlov J Biol Sci. 1976;11:180–90.

    PubMed  CAS  Google Scholar 

  25. Choi JS, Moore JW. Cerebellar neuronal activity expresses the complex topography of conditioned eyeblink responses. Behav Neurosci. 2003;117(6):1211–9.

    Article  PubMed  Google Scholar 

  26. Yamazaki T, Tanaka S. Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum. 2009;8(4):423–32.

    Article  PubMed  Google Scholar 

  27. Fiala JC, Grossberg S, Bullock D. Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J Neurosci. 1996;16(11):3760–74.

    PubMed  CAS  Google Scholar 

  28. Steuber V, Willshaw D. A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell. J Comput Neurosci. 2004;17:149–64.

    Article  PubMed  Google Scholar 

  29. Desmond JE, Moore JW. Adaptive timing in neural networks: the conditioned response. Biol Cybern. 1988;58(6):405–15.

    Article  PubMed  CAS  Google Scholar 

  30. Zipser D. A model of hippocampal learning during classical conditioning. Behav Neurosci. 1986;100(5):764–76.

    Article  PubMed  CAS  Google Scholar 

  31. Hesslow G, Svensson P, Ivarsson M. Learned movements elicited by direct stimulation of cerebellar mossy fiber afferents. Neuron. 1999;24(1):179–85.

    Article  PubMed  CAS  Google Scholar 

  32. Svensson P, Jirenhed DA, Bengtsson F, Hesslow G. Effect of conditioned stimulus parameters on timing of conditioned Purkinje cell responses. J Neurophysiol. 2010;103(3):1329–36.

    Article  PubMed  Google Scholar 

  33. Medina JF, Mauk MD. Computer simulation of cerebellar information processing. Nat Neurosci. 2000;3:1205–11.

    Article  PubMed  CAS  Google Scholar 

  34. Moore JW, Desmond JE, Berthier NE. Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biol Cybern. 1989;62(1):17–28.

    Article  PubMed  CAS  Google Scholar 

  35. Jörntell H, Ekerot CF. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci. 2006;26(45):11786–97.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Research Council to The Linnaeus Centre for Cognition, Communication and Learning at Lund University (349-2007-8695) and to G. Hesslow (09899) and the Söderberg and Åhlen foundations.

Conflict of interest

We hereby certify that we have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Anders Jirenhed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jirenhed, DA., Hesslow, G. Learning Stimulus Intervals—Adaptive Timing of Conditioned Purkinje Cell Responses. Cerebellum 10, 523–535 (2011). https://doi.org/10.1007/s12311-011-0264-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0264-3

Keywords

Navigation