The Cerebellum

, Volume 10, Issue 1, pp 81–87 | Cite as

Superior Cerebellar Peduncle Atrophy in Friedreich’s Ataxia Correlates with Disease Symptoms

  • Hamed Akhlaghi
  • Louise Corben
  • Nellie Georgiou-Karistianis
  • John Bradshaw
  • Elsdon Storey
  • Martin B. Delatycki
  • Gary F. Egan


Friedreich’s ataxia (FRDA) is the most common early onset inherited ataxia with clinical manifestations, including gradual progression of unremitting cerebellar–sensory ataxia, peripheral sensory loss, loss of lower limb tendon reflexes and hypertrophic cardiomyopathy. Although atrophy of the superior cerebellar peduncle (SCP) has been reported in several magnetic resonance imaging (MRI) studies of FRDA, the relationship of SCP changes to genetic and clinical features of FRDA has not been investigated. We acquired T1-weighted MRI scans in 12 right-handed individuals with FRDA, homozygous for a GAA expansion in intron 1 of FXN, as well as 13 healthy age-matched controls. The corrected cross-sectional areas of the right (left) SCP in the individuals with FRDA (R, 20 ± 7.9 mm2; L, 25 ± 5.6 mm2) were significantly smaller than for controls (R, 68 ± 16 mm2; L, 78 ± 17 mm2) (p < 0.001). The SCP volumes of individuals with FRDA were negatively correlated with Friedreich’s ataxia rating scale score (r = −0.553) and disease duration (r = −0.541), and positively correlated with the age of onset (r = 0.548) (p < 0.05). These findings suggest that structural MR imaging of the SCP can provide a surrogate marker of disease severity in FRDA and support the potential role of structural MRI as a biomarker in the evaluation of neurodegenerative diseases and therapies.


Friedreich’s ataxia Superior cerebellar peduncle Cerebellum Volumetric MRI 


  1. 1.
    Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256 Suppl 1:3–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Alper G, Narayanan V. Friedreich’s ataxia. Pediatr Neurol. 2003;28(5):335–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Wullner U, Klockgether T, Petersen D, Naegele T, Dichgans J. Magnetic resonance imaging in hereditary and idiopathic ataxia. Neurology. 1993;43(2):318–25.PubMedGoogle Scholar
  5. 5.
    Huang YP, Tuason MY, Wu T, Plaitakis A. MRI and CT features of cerebellar degeneration. J Formos Med Assoc. 1993;92(6):494–508.PubMedGoogle Scholar
  6. 6.
    Ormerod IE, Harding AE, Miller DH, Johnson G, MacManus D, du Boulay EP, et al. Magnetic resonance imaging in degenerative ataxic disorders. J Neurol Neurosurg Psychiatry. 1994;57(1):51–7.CrossRefPubMedGoogle Scholar
  7. 7.
    De Michele G, Di Salle F, Filla A, D'Alessio G, Ambrosio G, Viscardi L, et al. Magnetic resonance imaging in “typical” and “late onset” Friedreich’s disease and early onset cerebellar ataxia with retained tendon reflexes. Ital J Neurol Sci. 1995;16(5):303–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F, et al. Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 2008;79(1):82–5.Google Scholar
  9. 9.
    Braak H, Braak E. Morphological studies of local circuit neurons in the cerebellar dentate nucleus of man. Hum Neurobiol. 1983;2(2):49–57.PubMedGoogle Scholar
  10. 10.
    Yamaguchi K, Goto N. Three-dimensional structure of the human cerebellar dentate nucleus: a computerized reconstruction study. Anat Embryol Berl. 1997;196(4):343–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Milosevic NT, Ristanovic D, Maric DL, Rajkovic K. Morphology and cell classification of large neurons in the adult human dentate nucleus: a quantitative study. Neurosci Lett. 2010;468(1):59–63.CrossRefPubMedGoogle Scholar
  12. 12.
    Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F, et al. Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. NeuroImage. 2008;40(1):19–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64(7):1261–2.PubMedGoogle Scholar
  14. 14.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23 Suppl 1:S208–19.CrossRefPubMedGoogle Scholar
  15. 15.
    Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57.CrossRefPubMedGoogle Scholar
  17. 17.
    Jack CR, Twomey CK, Zinsmeister AR, Sharbrough FW, Petersen RC, Cascino GD. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults. Radiology. 1989;172(2):549–54.PubMedGoogle Scholar
  18. 18.
    Barnes J, Scahill RI, Boyes RG, Frost C, Lewis EB, Rossor CL, et al. Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates. Neuroimage. 2004;23(2):574–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Paviour DC, Price SL, Stevens JM, Lees AJ, Fox NC. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology. 2005;64(4):675–9.PubMedGoogle Scholar
  20. 20.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.PubMedGoogle Scholar
  21. 21.
    Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.CrossRefPubMedGoogle Scholar
  22. 22.
    Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33(1):127–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46(1):39–46.CrossRefPubMedGoogle Scholar
  24. 24.
    Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.PubMedGoogle Scholar
  25. 25.
    Golden CJ. The Stroop Color and Word Test. A manual for clinical and experimental uses. Chicago: Stoelting; 1978.Google Scholar
  26. 26.
    Nelson HE, O'Connell A. Dementia: the estimation of premorbid intelligence levels using the New Adult Reading Test. Cortex. 1978;14(2):234–44.PubMedGoogle Scholar
  27. 27.
    Corben LA, Georgiou-Karistianis N, Fahey MC, Storey E, Churchyard A, Horne M, et al. Towards an understanding of cognitive function in Friedreich ataxia. Brain Res Bull. 2006;70(3):197–202.CrossRefPubMedGoogle Scholar
  28. 28.
    Corben LA, Delatycki MB, Bradshaw JL, Horne MK, Fahey MC, Churchyard AJ, et al. Impairment in motor reprogramming in Friedreich ataxia reflecting possible cerebellar dysfunction. J Neurol. 2009;257(5):782–89.CrossRefPubMedGoogle Scholar
  29. 29.
    Wessel K, Schroth G, Diener HC, Muller-Forell W, Dichgans J. Significance of MRI-confirmed atrophy of the cranial spinal cord in Friedreich’s ataxia. Eur Arch Psychiatry Neurol Sci. 1989;238(4):225–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Mascalchi M, Salvi F, Piacentini S, Bartolozzi C. Friedreich’s ataxia: MR findings involving the cervical portion of the spinal cord. Am J Roentgenol. 1994;163(1):187–91.Google Scholar
  31. 31.
    Barbeau A. The Quebec cooperative study of Friedreich’s ataxia: 1974–1984—10 years of research. Can J Neurol Sci. 1984;11(4 Suppl):646–60.PubMedGoogle Scholar
  32. 32.
    Ramos A, Quintana F, Diez C, Leno C, Berciano J. CT findings in spinocerebellar degeneration. Ajnr. 1987;8(4):635–40.PubMedGoogle Scholar
  33. 33.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMedGoogle Scholar
  34. 34.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.PubMedGoogle Scholar
  35. 35.
    Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Ann Neurol. 1999;46(1):123–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Franca Jr MC, D'Abreu A, Yasuda CL, Bonadia LC, Santos da Silva M, Nucci A, et al. A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol. 2009;256(7):1114–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Pagani E, Ginestroni A, Della Nave R, Agosta F, Salvi F, De Michele G, et al. Assessment of brain white matter fiber bundle atrophy in patients with Friedreich ataxia. Radiology. 2010;255(3):882–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505.CrossRefPubMedGoogle Scholar
  39. 39.
    Pia Sormani M, Bruzzi P, Comi G, Filippi M. MRI metrics as surrogate markers for clinical relapse rate in relapsing–remitting MS patients. Neurology. 2002;58(3):417–21.Google Scholar
  40. 40.
    Scheltens P, Barkhof F, Fazekas F. White matter changes on MRI as surrogate marker. Int Psychogeriatr. 2003;15(SupplementS1):261–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Bohanna I, Georgiou-Karistianis N, Hannan AJ, Egan GF. Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Res Rev. 2008;58(1):209–25.CrossRefPubMedGoogle Scholar
  42. 42.
    Delatycki MB. Evaluating the progression of Friedreich ataxia and its treatment. J Neurol. 2009;256 Suppl 1:36–41.CrossRefPubMedGoogle Scholar
  43. 43.
    Storey E, Tuck K, Hester R, Hughes A, Churchyard A. Inter-rater reliability of the international cooperative ataxia rating scale (ICARS). Mov Disord. 2004;19(2):190–2.CrossRefPubMedGoogle Scholar
  44. 44.
    Lynch DR, Farmer JM, Tsou AY, Perlman S, Subramony SH, Gomez CM, et al. Measuring Friedreich ataxia: complementary features of examination and performance measures. Neurology. 2006;66(11):1711–16.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hamed Akhlaghi
    • 1
  • Louise Corben
    • 2
    • 3
  • Nellie Georgiou-Karistianis
    • 3
  • John Bradshaw
    • 3
  • Elsdon Storey
    • 4
  • Martin B. Delatycki
    • 2
    • 5
  • Gary F. Egan
    • 1
  1. 1.Florey Neurosciences Institute, Centre for NeurosciencesUniversity of MelbourneParkvilleAustralia
  2. 2.Bruce Lefroy Centre for Genetic Health ResearchMurdoch Childrens Research InstituteParkvilleAustralia
  3. 3.Experimental Neuropsychology Research Unit, School of Psychology and PsychiatryMonash UniversityClaytonAustralia
  4. 4.Department of Medicine (Neurosciences)Monash University (Alfred Hospital Campus)PrahranAustralia
  5. 5.Department of Clinical GeneticsAustin HealthHeidelbergAustralia

Personalised recommendations