The Cerebellum

, Volume 10, Issue 3, pp 373–392 | Cite as

Cell Death as a Regulator of Cerebellar Histogenesis and Compartmentation

  • Jakob Jankowski
  • Andreas Miething
  • Karl Schilling
  • John Oberdick
  • Stephan Baader


Programmed cell death is essential for the homeostasis of tissues and organs. During the development of the central nervous system, programmed cell death is highly regulated and restricted to distinct developmental time points of histogenesis. In this review, we will summarize recent data on the temporal and spatial distribution of programmed Purkinje cell death within the cerebellar cortex. We point out that programmed cell death within distinct regions of the developing cerebellar cortex differs by type and its cellular consequences. We submit the concept that local Purkinje cell death is important for late compartmentation of the cerebellar cortex and its wiring. To support this hypothesis, we provide new data obtained from a cerebellar mutant with prolonged expression of Engrailed-2 specifically in cerebellar Purkinje cells which shows increased local physiological cell death and concomitant changes in the pattern of afferent innervation.


Apoptosis Engrailed-2 Midline Patterning Axon guidance Autism 



We are very grateful to the excellent technical help of S. Ramrath and A. Ihmer, and to our animal care takers D. Hupfer and F. Neuhalfen. The L7En-2 mice were originally produced with support from NIH grant RO1-NS33114 to JO. This work was supported by BONFOR O-167.0010.

Conflicts of Interest

The authors declare no conflict of interest. Figure 5e–g have been reproduced with permission from John Wiley and Sons (license no. 2482920729945, Aug 06, 2010) and Elsevier (license no. 2482451437575, Aug 05, 2010).

Supplementary material

12311_2010_222_Fig6_ESM.gif (163 kb)
Fig. 1

a, b Cerebellar precursor cells were labeled with BrdU between E11 and E13. BrdU-positive nuclei were counted within a 100–150 μm wide band located just beneath the EGL (as shown in a; half of a frontal section of the cerebellum of a newborn mouse, boxes indicate regions analyzed; the line marks the midline; bar = 250 μm). b Higher magnification depicting BrdU-labeled cells which were counted (arrowheads, bar is 20 μm). c Microphotograph of apoptotic PCs characterized by Calb1-immunoreactive pyknotic figures (arrowheads) within a frontal paraffin-embedded cerebellar section of a 7-day-old mouse (bar is 50 μm). (GIF 163 kb)

12311_2010_222_MOESM1_ESM.tif (3.3 mb)
High-resolution image (TIFF 3378 kb)


  1. 1.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3–11.PubMedGoogle Scholar
  2. 2.
    Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl). 1990;181:195–213.Google Scholar
  3. 3.
    Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature. 2006;443:796–802.PubMedGoogle Scholar
  4. 4.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.PubMedGoogle Scholar
  5. 5.
    Merino R, Ganan Y, Macias D, Rodriguez-Leon J, Hurle JM. Bone morphogenetic proteins regulate interdigital cell death in the avian embryo. Ann NY Acad Sci. 1999;887:120–32.PubMedGoogle Scholar
  6. 6.
    Poelmann RE, Molin D, Wisse LJ, Wisse LJ, Gittenberger-de Groot AC. Apoptosis in cardiac development. Cell Tissue Res. 2000;301:43–52.PubMedGoogle Scholar
  7. 7.
    Fisher SA, Langille BL, Srivastava D. Apoptosis during cardiovascular development. Circ Res. 2000;87:856–64.PubMedGoogle Scholar
  8. 8.
    Dudas M, Li WY, Kim J, Yang A, Kaartinen V. Palatal fusion–where do the midline cells go? A review on cleft palate, a major human birth defect. Acta Histochem. 2007;109:1–14.PubMedGoogle Scholar
  9. 9.
    Jin JZ, Ding J. Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion. Development. 2006;133:3341–7.PubMedGoogle Scholar
  10. 10.
    Buss RR, Sun W, Oppenheim RW. Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci. 2006;29:1–35.PubMedGoogle Scholar
  11. 11.
    Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci. 1991;14:453–501.PubMedGoogle Scholar
  12. 12.
    Sengelaub DR, Finlay BL. Cell death in the mammalian visual system during normal development: I. Retinal ganglion cells. J Comp Neurol. 1982;204:311–7.PubMedGoogle Scholar
  13. 13.
    Martin-Partido G, Rodriguez-Gallardo L, Alvarez IS, Navascues J. Cell death in the ventral region of the neural retina during the early development of the chick embryo eye. Anat Rec. 1988;222:272–81.PubMedGoogle Scholar
  14. 14.
    Francisco-Morcillo J, Hidalgo-Sanchez M, Martin-Partido G. Spatial and temporal patterns of apoptosis during differentiation of the retina in the turtle. Anat Embryol (Berl). 2004;208:289–99.Google Scholar
  15. 15.
    Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70:473–507.PubMedGoogle Scholar
  16. 16.
    Madalosso SH, Perez-Villegas EM, Armengol JA. Naturally occurring neuronal death during the postnatal development of Purkinje cells and their precerebellar afferent projections. Brain Res Brain Res Rev. 2005;49:267–79.PubMedGoogle Scholar
  17. 17.
    Dusart I, Guenet JL, Guenet JL. Sotelo C Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum. 2006;5:163–73.PubMedGoogle Scholar
  18. 18.
    Baader SL, Sanlioglu S, Berrebi AS, Parker-Thornburg J, Oberdick J. Ectopic overexpression of Engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions. J Neurosci. 1998;18:1763–73.PubMedGoogle Scholar
  19. 19.
    Jankowski J, Holst MI, Liebig C, Oberdick J, Baader SL. Engrailed-2 negatively regulates the onset of perinatal Purkinje cell differentiation. J Comp Neurol. 2004;472:87–99.PubMedGoogle Scholar
  20. 20.
    Jankowski J, Miething A, Schilling K, Baader SL. Physiological Purkinje cell death is spatiotemporally organized in the developing mouse cerebellum. Cerebellum. 2009;8:277–90.PubMedGoogle Scholar
  21. 21.
    Baader SL, Bergmann M, Mertz KD, Fox PA, Gerdes J, Oberdick J, et al. The differentiation of cerebellar interneurons is independent of their mitotic history. Neuroscience. 1999;90:1243–54.PubMedGoogle Scholar
  22. 22.
    Pesheva P, Urschel S, Frei K, Probstmeier R. Murine microglial cells express functionally active galectin-3 in vitro. J Neurosci Res. 1998;51:49–57.PubMedGoogle Scholar
  23. 23.
    Armstrong CL, Chung SH, Armstrong JN, Hochgeschwender U, Jeong YG, Hawkes R. A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive Purkinje cell stripes in the mouse cerebellum. J Comp Neurol. 2009;517:524–38.PubMedGoogle Scholar
  24. 24.
    R: A language and environment for statistical computing [computer program]. Vienna, Austria: R Foundation for Statistical Computing; 2010.Google Scholar
  25. 25.
    Miething A. Ultrathin sectioning of different areas of the same semithin section. Microsc Res Tech. 1992;21:73–4.PubMedGoogle Scholar
  26. 26.
    Dunn PF. Measurement and data analysis for engineering and science. 2nd ed. New York: McGraw-Hill; 2005.Google Scholar
  27. 27.
    Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J. Increased cerebellar Purkinje cell numbers in mice overexpressing a human Bcl-2 transgene. J Comp Neurol. 1996;374:332–41.PubMedGoogle Scholar
  28. 28.
    Fan H, Favero M, Vogel MW. Elimination of Bax expression in mice increases cerebellar Purkinje cell numbers but not the number of granule cells. J Comp Neurol. 2001;436:82–91.PubMedGoogle Scholar
  29. 29.
    Ashwell K. Microglia and cell death in the developing mouse cerebellum. Brain Res Dev Brain Res. 1990;55:219–30.PubMedGoogle Scholar
  30. 30.
    Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, et al. ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci. 2004;24:1486–96.PubMedGoogle Scholar
  31. 31.
    Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41:535–47.PubMedGoogle Scholar
  32. 32.
    Dusart I, Airaksinen MS, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci. 1997;17:3710–26.PubMedGoogle Scholar
  33. 33.
    Dusart I, Ghoumari A, Wehrle R, Morel MP, Bouslama-Oueghlani L, Camand E, et al. Cell death and axon regeneration of Purkinje cells after axotomy: challenges of classical hypotheses of axon regeneration. Brain Res Brain Res Rev. 2005;49:300–16.PubMedGoogle Scholar
  34. 34.
    Ghoumari AM, Wehrl’ R, Bernard O, Sotelo C, Dusart I. Implicaton of Bcl-2 and caspase-3 in age-related Purkinje cell death in murine organotypic culture: an in vitro model to study apoptosis. Eur J Neurosci. 2000;12:2935–49.PubMedGoogle Scholar
  35. 35.
    Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron. 1999;22:103–14.PubMedGoogle Scholar
  36. 36.
    Rowitch DH, Jacques B, Lee SMK, Flax JD, Snyder EY, McMahon AP. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci. 1999;19:8954–65.PubMedGoogle Scholar
  37. 37.
    Hartmann W, Koch A, Brune H, Waha A, Schuller U, Dani I, et al. Insulin-like growth factor II is involved in the proliferation control of medulloblastoma and its cerebellar precursor cells. Am J Pathol. 2005;166:1153–62.PubMedGoogle Scholar
  38. 38.
    Joyner AL, Herrup K, Auerbach BA, Davis CA, Rossant J. Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the en-2 homeobox. Science. 1991;251:1239–43.PubMedGoogle Scholar
  39. 39.
    Millen KJ, Wurst W, Herrup K, Joyner AL. Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development. 1994;120:695–706.PubMedGoogle Scholar
  40. 40.
    Simon HH, Saueressig H, Wurst W, Goulding MD, O’Leary DD. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci. 2001;21:3126–34.PubMedGoogle Scholar
  41. 41.
    Alberi L, Sgado P, Simon HH. Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development. 2004;131:3229–36.PubMedGoogle Scholar
  42. 42.
    Simon HH, Scholz C, O’Leary DD. Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dose-dependent manner. Mol Cell Neurosci. 2005;28:96–105.PubMedGoogle Scholar
  43. 43.
    Wetts R, Herrup K. Cerebellar Purkinje cells are descended from a small number of progenitors committed during early development: quantitative analysis of Lurcher chimeric mice. J Neurosci. 1982;2:1494–8.PubMedGoogle Scholar
  44. 44.
    Roffler-Tarlov S, Herrup K. Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse. Brain Res. 1981;215:49–59.PubMedGoogle Scholar
  45. 45.
    Goldowitz D, Eisenman LM. Genetic mutations affecting murine cerebellar structure and function. In: Driscoll P, editor. Genetically defined animal models of neurobehavioral dysfunctions. Boston: Birkhauser; 1992. p. 66–88.Google Scholar
  46. 46.
    Voogd J, Ruigrok TJ. Transverse and longitudinal patterns in the mammalian cerebellum. Prog Brain Res. 1997;114:21–37.PubMedGoogle Scholar
  47. 47.
    Hawkes R. An anatomical model of cerebellar modules. Prog Brain Res. 1997;114:39–52.PubMedGoogle Scholar
  48. 48.
    Voogd J, Glickstein M. The anatomy of the cerebellum. TINS. 1998;21:370–5.PubMedGoogle Scholar
  49. 49.
    Oberdick J, Baader SL, Schilling K. From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. TINS. 1998;21:383–90.PubMedGoogle Scholar
  50. 50.
    Inouye M, Oda SI. Strain-specific variations in the folial pattern of the mouse cerebellum. J Comp Neurol. 1980;190:357–62.PubMedGoogle Scholar
  51. 51.
    Corrales JD, Blaess S, Mahoney EM, Joyner AL. The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development. 2006;133:1811–21.PubMedGoogle Scholar
  52. 52.
    Inouye M, Murakami U. Temporal and spatial patterns of Purkinje cell formation in the mouse cerebellum. J Comp Neurol. 1980;194:499–503.PubMedGoogle Scholar
  53. 53.
    Larsell O. The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat. J Comp Neurol. 1952;97:281–356.PubMedGoogle Scholar
  54. 54.
    Scott TG. A unique pattern of localization within the cerebellum. Nature. 1963;200:793.PubMedGoogle Scholar
  55. 55.
    Herrup K, Kuemerle B. The compartmentalization of the cerebellum. Annu Rev Neurosci. 1997;20:61–90.PubMedGoogle Scholar
  56. 56.
    Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10:670–81.PubMedGoogle Scholar
  57. 57.
    Hawkes R, Gravel C. The modular cerebellum. Prog Neurobiol. 1991;36:309–27.PubMedGoogle Scholar
  58. 58.
    Lin JC, Cepko CL. Granule cell raphes and parasagittal domains of Purkinje cells: complementary patterns in the developing chick cerebellum. J Neurosci. 1998;18:9342–53.PubMedGoogle Scholar
  59. 59.
    Lin JC, Cepko CL. Biphasic dispersion of clones containing Purkinje cells and glia in the developing chick cerebellum. Dev Biol. 1999;211:177–97.PubMedGoogle Scholar
  60. 60.
    Luckner R, Obst-Pernberg K, Hirano S, Suzuki ST, Redies C. Granule cell raphes in the developing mouse cerebellum. Cell Tissue Res. 2001;303:159–72.PubMedGoogle Scholar
  61. 61.
    Karam SD, Kim YS, Bothwell M. Granule cells migrate within raphes in the developing cerebellum: an evolutionarily conserved morphogenic event. J Comp Neurol. 2001;440:127–35.PubMedGoogle Scholar
  62. 62.
    Lockshin RA. Programmed cell death - II. Endocrine potentiationof the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1964;11:123–33.Google Scholar
  63. 63.
    Baader SL, Vogel MW, Zhang X, Sanlioglu S, Oberdick J. Selective disruption of "late onset" sagittal banding patterns by ectopic expression of Engrailed-2 in cerebellar Purkinje cells. J Neurosci. 1999;19:5370–9.PubMedGoogle Scholar
  64. 64.
    Linke S, Goertz P, Baader SL, Gieselmann V, Siebler M, Junghans U, et al. Aldolase C/ZebrinII is released to the extracellular space after stroke and inhibits the network activity of cortical neurons. Neurochem Res. 2006;31:1297–303.PubMedGoogle Scholar
  65. 65.
    Mason CA, Gregory E. Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J Neurosci. 1984;4:1715–35.PubMedGoogle Scholar
  66. 66.
    Chedotal A, Sotelo C. Early development of olivocerebellar projections in the fetal rat using CGRP immunocytochemistry. Eur J Neurosci. 1992;4:1159–79.PubMedGoogle Scholar
  67. 67.
    Arsenio-Nunes ML, Sotelo C. Development of the spinocerebellar system in the postnatal rat. J Comp Neurol. 1985;237:291–306.PubMedGoogle Scholar
  68. 68.
    Lopez-Roman A, Ambrosiani J, Armengol JA. Transient ipsilateral innervation of the cerebellum by developing olivocerebellar neurons—a retrograde double- labelling study with fast blue and diamidino yellow. Neuroscience. 1993;56:485–97.Google Scholar
  69. 69.
    Ryder EF, Cepko CL. Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron. 1994;12:1011–29.PubMedGoogle Scholar
  70. 70.
    Alcantara S, Ruiz M, De Castro F, Soriano E, Sotelo C. Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development. 2000;127:1359–72.PubMedGoogle Scholar
  71. 71.
    Kunzle H. Non-uniform projections of granule cells to the cerebellar molecular layer. An autoradiographic tracing study in a turtle. Anat Embryol (Berl). 1987;175:537–44.Google Scholar
  72. 72.
    Brown ME, Ariel M. Topography and response timing of intact cerebellum stained with absorbance voltage-sensitive dye. J Neurophysiol. 2009;101:474–90.PubMedGoogle Scholar
  73. 73.
    Smeyne RJ, Chu T, Lewin A, Bian F, Crisman SS, Kunsch C, et al. Local control of granule cell generation by cerebellar Purkinje cells. Mol Cell Neurosci. 1995;6:230–51.PubMedGoogle Scholar
  74. 74.
    Groenewegen HJ, Voogd J. The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol. 1979;183:551–601.PubMedGoogle Scholar
  75. 75.
    Voogd J. Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Prog Brain Res. 1967;25:94–134.PubMedGoogle Scholar
  76. 76.
    Marani E, Voogd J. The morphology of the mouse cerebellum. Acta Morphol Neerl Scand. 1979;17:33–52.PubMedGoogle Scholar
  77. 77.
    Sotelo C, Wassef M. Cerebellar development: afferent organization and Purkinje cell heterogeneity. Philos Trans R Soc Lond [Biol]. 1991;331:307–13.Google Scholar
  78. 78.
    Rabacchi SA, Solowska JM, Kruk B, Luo Y, Raper JA, Baird DH. Collapsin-1/semaphorin-III/D is regulated developmentally in Purkinje cells and collapses pontocerebellar Mossy fiber neuronal growth cones. J Neurosci. 1999;19:4437–48.PubMedGoogle Scholar
  79. 79.
    Heckroth JA, Abbott LC. Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Res. 1994;658:93–104.PubMedGoogle Scholar
  80. 80.
    Sawada K, Kalam AA, Sakata-Haga H, Lee NS, Jeong YG, Fukui Y. Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. Acta Neurobiol Exp (Wars). 2009;69:138–45.Google Scholar
  81. 81.
    Duffin CA, McFarland R, Sarna JR, Vogel MW, Armstrong CL. Heat shock protein 25 expression and preferential Purkinje cell survival in the lurcher mutant mouse cerebellum. J Comp Neurol. 2010;518:1892–907.PubMedGoogle Scholar
  82. 82.
    Sarna J, Miranda SR, Schuchman EH, Hawkes R. Patterned cerebellar Purkinje cell death in a transgenic mouse model of Niemann pick type A/B disease. Eur J Neurosci. 2001;13:1873–80.PubMedGoogle Scholar
  83. 83.
    Armstrong DM, Harvey RJ, Schild RF. Topographical localization in the olivo-cerebellar projection: an electrophysiological study in the cat. J Comp Neurol. 1974;154:287–302.PubMedGoogle Scholar
  84. 84.
    Gravel C, Eisenman LM, Sasseville R, Hawkes R. Parasagittal organization of the rat cerebellar cortex: direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection. J Comp Neurol. 1987;265:294–310.PubMedGoogle Scholar
  85. 85.
    Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M. Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience. 2009;162:601–11.PubMedGoogle Scholar
  86. 86.
    Strata P, Tempia F, Zagrebelsky M, Rossi F. Reciprocal trophic interactions between climbing fibres and Purkinje cells in the rat cerebellum. Prog Brain Res. 1997;114:263–82.PubMedGoogle Scholar
  87. 87.
    Miwa H, Kubo T, Suzuki A, Kihira T, Kondo T. A species-specific difference in the effects of harmaline on the rodent olivocerebellar system. Brain Res. 2006;1068:94–101.PubMedGoogle Scholar
  88. 88.
    Paradies MA, Eisenman LM. Evidence of early topographic organization in the embryonic olivocerebellar projection—a model system for the study of pattern formation processes in the central nervous system. Develop Dynam. 1993;197:125–45.Google Scholar
  89. 89.
    Paradies MA, Grishkat HL, Smeyne RJ, Oberdick J, Morgan JI, Eisenman LM. Correspondence between L7-lacZ-expressing Purkinje cells and labeled olivocerebellar fibers during late embryogenesis in the mouse. J Comp Neurol. 1996;374:451–66.PubMedGoogle Scholar
  90. 90.
    Wassef M, Cholley B, Heizmann CW, Sotelo C. Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartmentations of the cerebellum and inferior olive through the projection map. J Comp Neurol. 1992;323:537–50.PubMedGoogle Scholar
  91. 91.
    Chedotal A, Bloch-Gallego E, Sotelo C. The embryonic cerebellum contains topographic cues that guide developing inferior olivary axons. Development. 1997;124:861–70.PubMedGoogle Scholar
  92. 92.
    Chu T, Hullinger H, Schilling K, Oberdick J. Spatial and temporal changes in natural and target deprivation-induced cell death in the mouse inferior olive. J Neurobiol. 2000;43:18–30.PubMedGoogle Scholar
  93. 93.
    Hawkes R, Leclerc N. Immunocytochemical demonstration of topographic ordering of Purkinje cell axon terminals in the fastigial nuclei of the rat. J Comp Neurol. 1986;244:481–91.PubMedGoogle Scholar
  94. 94.
    Paallysaho J, Sugita S, Noda H. Cerebellar corticonuclear and nucleocortical projections in the vermis of posterior lobe of the rat as studied with anterograde and retrograde transport of WGA-HRP. Neurosci Res. 1990;8:158–78.PubMedGoogle Scholar
  95. 95.
    Chung SH, Marzban H, Hawkes R. Compartmentation of the cerebellar nuclei of the mouse. Neuroscience. 2009;161:123–38.PubMedGoogle Scholar
  96. 96.
    Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77.PubMedGoogle Scholar
  97. 97.
    Blanco MJ, Pena-Melian A, Nieto MA. Expression of EphA receptors and ligands during chick cerebellar development. Mech Dev. 2002;114:225–9.PubMedGoogle Scholar
  98. 98.
    Porzionato A, Macchi V, Guidolin D, Sarasin G, Parenti A, De CR. Anatomic distribution of apoptosis in medulla oblongata of infants and adults. J Anat. 2008;212:106–13.PubMedGoogle Scholar
  99. 99.
    Baader SL, Schilling ML, Rosengarten B, Pretsch W, Teutsch HF, Oberdick J, et al. Purkinje cell lineage and the topographic organization of the cerebellar cortex: a view from X inactivation mosaics. Dev Biol. 1996;174:393–406.PubMedGoogle Scholar
  100. 100.
    Altman J, Bayer SA. Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol. 1978;179:23–48.PubMedGoogle Scholar
  101. 101.
    Hashimoto M, Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the "Birth Date" of Purkinje cells. J Neurosci. 2003;23:11342–51.PubMedGoogle Scholar
  102. 102.
    Karam SD, Burrows RC, Logan C, Koblar S, Pasquale EB, Bothwell M. Eph receptor and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration. J Neurosci. 2000;20:6488–500.PubMedGoogle Scholar
  103. 103.
    Holst MI, Maercker C, Pintea B, Masseroli M, Liebig C, Jankowski J, et al. Engrailed-2 regulates genes related to vesicle formation and transport in cerebellar Purkinje cells. Mol Cell Neurosci. 2008;38:495–504.PubMedGoogle Scholar
  104. 104.
    Feng G, Laskowski MB, Feldheim DA, Wang H, Lewis R, Frisen J, et al. Roles for ephrins in positionally selective synaptogenesis between motor neurons and muscle fibers. Neuron. 2000;25:295–306.PubMedGoogle Scholar
  105. 105.
    Kullander K, Mather NK, Diella F, Dottori M, Boyd AW, Klein R. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron. 2000;29:73–84.Google Scholar
  106. 106.
    Egea J, Nissen UV, Dufour A, Sahin M, Greer P, Kullander K, et al. Regulation of EphA4 Kinase Activity Is Required for a Subset of Axon Guidance Decisions Suggesting a Key Role for Receptor Clustering in Eph Function. Neuron. 2005;47:515–28.PubMedGoogle Scholar
  107. 107.
    Depaepe V, Suarez-Gonzalez N, Dufour A, Passante L, Gorski JA, Jones KR, et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature. 2005;435:1244–50.PubMedGoogle Scholar
  108. 108.
    Risley M, Garrod D, Henkemeyer M, McLean W. EphB2 and EphB3 forward signalling are required for palate development. Mech Dev. 2009;126:230–9.PubMedGoogle Scholar
  109. 109.
    Furne C, Ricard J, Cabrera JR, Pays L, Bethea JR, Mehlen P, et al. EphrinB3 is an anti-apoptotic ligand that inhibits the dependence receptor functions of EphA4 receptors during adult neurogenesis. Biochim Biophys Acta. 2009;1793:231–8.PubMedGoogle Scholar
  110. 110.
    Holen HL, Shadidi M, Narvhus K, Kjosnes O, Tierens A, Aasheim HC. Signaling through ephrin-A ligand leads to activation of Src-family kinases, Akt phosphorylation, and inhibition of antigen receptor-induced apoptosis. J Leukoc Biol. 2008;84:1183–91.PubMedGoogle Scholar
  111. 111.
    Takasu MA, Dalva MB, Zigmond RE, Greenberg ME. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 2002;295:491–5.PubMedGoogle Scholar
  112. 112.
    Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five n-methyl-d-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol. 1994;347:150–60.PubMedGoogle Scholar
  113. 113.
    Watanabe M, Mishina M, Inoue Y. Distinct spatiotemporal expressions of five NMDA receptor channel subunit mRNAs in the cerebellum. J Comp Neurol. 1994;343:513–9.PubMedGoogle Scholar
  114. 114.
    Roelink H, Nusse R. Expression of two members of the wnt family during mouse development—restricted temporal and spatial patterns in the developing neural tube. Genes Dev. 1991;5:381–8.PubMedGoogle Scholar
  115. 115.
    Parr BA, Shea MJ, Vassileva G, McMahon AP. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development. 1993;119:247–61.PubMedGoogle Scholar
  116. 116.
    Millen KJ, Hui CC, Joyner AL. A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. Development. 1995;121:3935–45.PubMedGoogle Scholar
  117. 117.
    Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 2010;11:77–86.PubMedGoogle Scholar
  118. 118.
    McGrew LL, Takemaru K, Bates R, Moon RT. Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech Dev. 1999;87:21–32.PubMedGoogle Scholar
  119. 119.
    Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature. 2005;437:417–21.PubMedGoogle Scholar
  120. 120.
    Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J. Increased inferior olivary neuron and cerebellar granule cell numbers in transgenic mice overexpressing the human Bcl-2 gene. J Neurobiol. 1997;32:502–16.PubMedGoogle Scholar
  121. 121.
    Zanjani H, Lemaigre-Dubreuil Y, Tillakaratne NJ, Blokhin A, McMahon RP, Tobin AJ, et al. Cerebellar Purkinje cell loss in aging Hu-Bcl-2 transgenic mice. J Comp Neurol. 2004;475:481–92.PubMedGoogle Scholar
  122. 122.
    Merry DE, Veis DJ, Hickey WF, Korsmeyer SJ. Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development. 1994;120:301–11.PubMedGoogle Scholar
  123. 123.
    Krajewska M, Mai JK, Zapata JM, Ashwell KW, Schendel SL, Reed JC, et al. Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ. 2002;9:145–57.PubMedGoogle Scholar
  124. 124.
    Vogel MW. Cell death, Bcl-2, Bax, and the cerebellum. Cerebellum. 2002;1:277–87.PubMedGoogle Scholar
  125. 125.
    Goswami J, Martin LA, Goldowitz D, Beitz AJ, Feddersen RM. Enhanced Purkinje cell survival but compromised cerebellar function in targeted anti-apoptotic protein transgenic mice. Mol Cell Neurosci. 2005;29:202–21.PubMedGoogle Scholar
  126. 126.
    Heitz S, Lutz Y, Rodeau JL, Zanjani H, Gautheron V, Bombarde G, et al. BAX contributes to Doppel-induced apoptosis of prion-protein-deficient Purkinje cells. Dev Neurobiol. 2007;67:670–86.PubMedGoogle Scholar
  127. 127.
    Heitz S, Gautheron V, Lutz Y, Rodeau JL, Zanjani HS, Sugihara I, et al. BCL-2 counteracts Doppel-induced apoptosis of prion-protein-deficient Purkinje cells in the Ngsk Prnp(0/0) mouse. Dev Neurobiol. 2008;68:332–48.PubMedGoogle Scholar
  128. 128.
    Ge Y, Belcher SM, Pierce DR, Light KE. Altered expression of Bcl2, Bad and Bax mRNA occurs in the rat cerebellum within hours after ethanol exposure on postnatal day 4 but not on postnatal day 9. Brain Res Mol Brain Res. 2004;129:124–34.PubMedGoogle Scholar
  129. 129.
    Heaton MB, Paiva M, Madorsky I, Siler-Marsiglio K, Shaw G. Effect of bax deletion on ethanol sensitivity in the neonatal rat cerebellum. J Neurobiol. 2006;66:95–101.PubMedGoogle Scholar
  130. 130.
    Fidler PS, Schuette K, Asher RA, Dobbertin A, Thornton SR, Calle-Patino Y, et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J Neurosci. 1999;19:8778–88.PubMedGoogle Scholar
  131. 131.
    Rezaie P, Cairns NJ, Male DK. Expression of adhesion molecules on human fetal cerebral vessels: relationship to microglial colonisation during development. Brain Res Dev Brain Res. 1997;104:175–89.PubMedGoogle Scholar
  132. 132.
    Walther M, Kuklinski S, Pesheva P, Guntinas-Lichius O, Angelov DN, Neiss WF, et al. Galectin-3 is upregulated in microglial cells in response to ischemic brain lesions, but not to facial nerve axotomy. J Neurosci Res. 2000;61:430–5.PubMedGoogle Scholar
  133. 133.
    Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci. 2009;10:235–41.PubMedGoogle Scholar
  134. 134.
    Hidalgo A, Booth GE. Glia dictate pioneer axon trajectories in the Drosophila embryonic CNS. Development. 2000;127:393–402.PubMedGoogle Scholar
  135. 135.
    Bandtlow CE, Zimmermann DR. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev. 2000;80:1267–90.PubMedGoogle Scholar
  136. 136.
    Forster E, Zhao S, Frotscher M. Hyaluronan-associated adhesive cues control fiber segregation in the hippocampus. Development. 2001;128:3029–39.PubMedGoogle Scholar
  137. 137.
    Inatani M, Irie F, Plump AS, Tessier-Lavigne M, Yamaguchi Y. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science. 2003;302:1044–6.PubMedGoogle Scholar
  138. 138.
    Franken S, Junghans U, Rosslenbroich V, Baader SL, Hoffmann R, Gieselmann V, et al. Collapsin response mediator proteins of neonatal rat brain interact with chondroitin sulfate. J Biol Chem. 2003;278:3241–50.PubMedGoogle Scholar
  139. 139.
    ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003;250:1025–36.PubMedGoogle Scholar
  140. 140.
    Provias JP, Becker LE. Cellular and molecular pathology of medulloblastoma. J Neurooncol. 1996;29:35–43.PubMedGoogle Scholar
  141. 141.
    Bobee S, Mariette E, Tremblay-Leveau H. Caston J Effects of early midline cerebellar lesion on cognitive and emotional functions in the rat. Behav Brain Res. 2000;112:107–17.PubMedGoogle Scholar
  142. 142.
    Geisen MJ, Meglio TD, Pasqualetti M, Ducret S, Brunet JF, Chedotal A, et al. Hox Paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling. PLoS Biol. 2008;6:e142.PubMedGoogle Scholar
  143. 143.
    Waters ST, Lewandoski M. A threshold requirement for Gbx2 levels in hindbrain development. Development. 2006;133:1991–2000.PubMedGoogle Scholar
  144. 144.
    Cheng LE, Zhang J. Reed RR The transcription factor Zfp423/OAZ is required for cerebellar development and CNS midline patterning. Dev Biol. 2007;307:43–52.PubMedGoogle Scholar
  145. 145.
    Alcaraz WA, Gold DA, Raponi E, Gent PM, Concepcion D, Hamilton BA. Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation. Proc Natl Acad Sci U S A. 2006;103:19424–9.PubMedGoogle Scholar
  146. 146.
    Condron BG, Patel NH, Zinn K. Engrailed controls glial/neuronal cell fate decisions at the midline of the central nervous system. Neuron. 1994;13:541–54.PubMedGoogle Scholar
  147. 147.
    Louvi A, Wassef M. Ectopic Engrailed 1 expression in the dorsal midline causes cell death, abnormal differentiation of circumventricular organs and errors in axonal pathfinding. Development. 2000;127:4061–71.PubMedGoogle Scholar
  148. 148.
    Chang J, Kim IO, Ahn JS, Kwon JS, Jeon SH, Kim SH. The CNS midline cells coordinate proper cell cycle progression and identity determination of the Drosophila ventral neuroectoderm. Dev Biol. 2000;227:307–23.PubMedGoogle Scholar
  149. 149.
    Lancioni A, Pizzo M, Fontanella B, Ferrentino R, Napolitano LM, De LE, et al. Lack of mid1, the mouse ortholog of the opitz syndrome gene, causes abnormal development of the anterior cerebellar vermis. J Neurosci. 2010;30:2880–7.PubMedGoogle Scholar
  150. 150.
    Beguin P, Crambert G, Monnet-Tschudi F, Uldry M, Horisberger JD, Garty H, et al. FXYD7 is a brain-specific regulator of Na, K-ATPase alpha 1-beta isozymes. EMBO J. 2002;21:3264–73.PubMedGoogle Scholar
  151. 151.
    Wang JW, Jiang YN, Huang CY, Huang PY, Huang MC, Cheng WT, et al. Proliferin enhances microvilli formation and cell growth of neuroblastoma cells. Neurosci Res. 2006;56:80–90.PubMedGoogle Scholar
  152. 152.
    Kato K, Yamanouchi D, Esbona K, Kamiya K, Zhang F, Kent KC, et al. Caspase-mediated protein kinase C-delta cleavage is necessary for apoptosis of vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2009;297:H2253–61.PubMedGoogle Scholar
  153. 153.
    Barmack NH, Qian Z, Yoshimura J. Regional and cellular distribution of protein kinase C in rat cerebellar Purkinje cells. J Comp Neurol. 2000;427:235–54.PubMedGoogle Scholar
  154. 154.
    Villalba M. A possible role for PKC delta in cerebellar granule cells apoptosis. NeuroReport. 1998;9:2381–5.PubMedGoogle Scholar
  155. 155.
    Liu Y, Halloran MC. Central and peripheral axon branches from one neuron are guided differentially by semaphorin3D and transient axonal glycoprotein-1. J Neurosci. 2005;25:10556–63.PubMedGoogle Scholar
  156. 156.
    Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell. 2003;113:11–23.PubMedGoogle Scholar
  157. 157.
    Deiner MS, Sretavan DW. Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin-1- and DCC-deficient mice. J Neurosci. 1999;19:9900–12.PubMedGoogle Scholar
  158. 158.
    Cowan CA, Yokoyama N, Bianchi LM, Henkemeyer M, Fritzsch B. EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron. 2000;26:417–30.PubMedGoogle Scholar
  159. 159.
    Xu JS, Liu ZH, Ornitz DM. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development. 2000;127:1833–43.PubMedGoogle Scholar
  160. 160.
    Di Meglio T, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A. Molecular mechanisms controlling midline crossing by Precerebellar Neurons. J Neurosci. 2008;28:6285–94.PubMedGoogle Scholar
  161. 161.
    Chizhikov VV, Millen KJ. Roof plate-dependent patterning of the vertebrate dorsal central nervous system. Dev Biol. 2005;277:287–95.PubMedGoogle Scholar
  162. 162.
    Alder J, Lee KJ, Jessell TM, Hatten ME. Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nat Neurosci. 1999;2:535–40.PubMedGoogle Scholar
  163. 163.
    Andrae J, Afink G, Zhang XQ, Wurst W, Nister M. Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Mol Cell Neurosci. 2004;26:308–21.PubMedGoogle Scholar
  164. 164.
    Biswas SC, Zhang Y, Iyirhiaro G, Willett RT, Rodriguez GY, Cregan SP, et al. Sertad1 Plays an Essential Role in Developmentaland Pathological Neuron Death. J Neurosci. 2010;30:3973–82.PubMedGoogle Scholar
  165. 165.
    Lawson A, Schoenwolf GC, England MA, Addai FK, Ahima RS. Programmed cell death and the morphogenesis of the hindbrain roof plate in the chick embryo. Anat Embryol (Berl). 1999;200:509–19.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jakob Jankowski
    • 1
  • Andreas Miething
    • 2
  • Karl Schilling
    • 1
  • John Oberdick
    • 3
  • Stephan Baader
    • 1
  1. 1.Institute of Anatomy, Anatomy and Cell BiologyUniversity of BonnBonnGermany
  2. 2.Institute of Anatomy, NeuroanatomyUniversity of BonnBonnGermany
  3. 3.Department of Neuroscience and Center for Molecular NeurobiologyThe Ohio State UniversityColumbusUSA

Personalised recommendations