The Cerebellum

, Volume 10, Issue 1, pp 32–42 | Cite as

An Electrophysiological Study of Visual Processing in Spinocerebellar Ataxia Type 2 (SCA2)

  • Jan Kremlacek
  • Martin Valis
  • Jiri Masopust
  • Ales Urban
  • Alena Zumrova
  • Radomir Talab
  • Miroslav Kuba
  • Zuzana Kubova
  • Jana Langrova
Article

Abstract

Reports of visual functional impairment in spinocerebellar ataxia type 2 (SCA2) have been studied previously using pattern reversal visually evoked potentials (VEPs) with contradictory results. To provide additional evidence to this area, visual functions were studied using VEPs and event-related potentials (ERPs) in a group of ten patients with genetically verified SCA2. The electrophysiological examination included pattern reversal and motion-onset VEPs as well as visually driven oddball ERPs with an evaluation of a target and a pre-attentive response. In six patients, we found abnormal visual/cognitive processing that differed from normal values in latency, but not in the amplitude of the dominant VEP/ERP peaks. Among the VEPs/ERPs used, the motion-onset VEPs exhibited the highest sensitivity and showed a strong Spearman correlation to SCA2 duration (from r = 0.82 to r = 0.90, p < 0.001) and clinical state assessed by Brief Ataxia Rating Scale (from r = 0.71 (p = 0.022) to r = 0.80 (p < 0.001)). None of the VEP/ERP latencies showed a correlation to the triplet repeats of the SCA2 gene. In three patients, we did not find any visual/cognitive pathology, and one subject showed only a single subtle prolongation of the VEP peak. The observed visual/cognitive deficit was related to the subjects’ clinical state and the illness duration, but no relationship to the genetic marker of SCA2 was found. From the VEP/ERP types used, the motion-onset VEPs seems to be the most promising candidate for clinical state monitoring rather than a tool for early diagnostic use.

Keywords

Spinocerebellar ataxia type 2 Visual evoked potentials Event-related potentials Motion processing 

References

  1. 1.
    Manto M, Marmolino D. Cerebellar disorders—at the crossroad of molecular pathways and diagnosis. Cerebellum. 2009;8(4):417–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Lastres-Becker I, Rub U, Auburger G. Spinocerebellar ataxia 2 (SCA2). Cerebellum [Review]. 2008;7(2):115–24.CrossRefGoogle Scholar
  3. 3.
    Schöls L, Linnemann C, Globas C. Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum. 2008;7(2):198–203.CrossRefPubMedGoogle Scholar
  4. 4.
    Perretti A, Santoro L, Lanzillo B, Filla A, De Michele G, Barbieri F, et al. Autosomal dominant cerebellar ataxia type I: multimodal electrophysiological study and comparison between SCA1 and SCA2 patients. J Neurol Sci. 1996;142(1–2):45–53. doi:10.1016/0022-510X(96)00140-2.CrossRefPubMedGoogle Scholar
  5. 5.
    Abele M, Burk K, Andres F, Topka H, Laccone F, Bosch S, et al. Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain. 1997;120(12):2141–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Rakowicz M, Zdzienicka E, Poniatowska R, Waliniowska E, Sułek A, Jakubowska T, et al. Spinocerebellar ataxias type 1 and 2: comparison of clinical, electrophysiological and magnetic resonance evaluation. Neurol Neurochir Pol. 2005;39(4):263–75.PubMedGoogle Scholar
  7. 7.
    Perez LV, Cruz GS, Ochoa NC, Labrada RR, Diaz JR, Mederos LA, et al. Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci [Article]. 2007;263(1–2):158–64.CrossRefGoogle Scholar
  8. 8.
    Heinrich SP. A primer on motion visual evoked potentials. Doc Ophthalmol. 2007;114(2):83–105.CrossRefPubMedGoogle Scholar
  9. 9.
    Kuba M, Kubova Z, Kremlacek J, Langrova J. Motion-onset VEPs: characteristics, methods, and diagnostic use. Vis Res. 2007;47(2):189–202.CrossRefPubMedGoogle Scholar
  10. 10.
    Kubova Z, Kuba M, Spekreijse H, Blakemore C. Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res. 1995;35:197–205.CrossRefPubMedGoogle Scholar
  11. 11.
    Schellart NA, Trindade MJ, Reits D, Verbunt JP, Spekreijse H. Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res. 2004;44(2):119–34.CrossRefPubMedGoogle Scholar
  12. 12.
    van Broekhoven P, Schraa-Tam C, van der Lugt A, Smits M, Frens M, van der Geest J. Cerebellar contributions to the processing of saccadic errors. Cerebellum. 2009;8(3):403–15. doi:10.1007/s12311-009-0116-6.CrossRefPubMedGoogle Scholar
  13. 13.
    Lencer R, Trillenberg P. Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain Cogn. 2008;68(3):219–28. doi:10.1016/j.bandc.2008.08.013.CrossRefPubMedGoogle Scholar
  14. 14.
    Pierrot-Deseilligny C, Gaymard B, Müri R, Rivaud S. Cerebral ocular motor signs. J Neurol. 1997;244(2):65–70. doi:10.1007/s004150050051.CrossRefPubMedGoogle Scholar
  15. 15.
    Helsinki WMADo. Ethical principles for medical research involving human subjects. 2004. http://www.wma.net/e/policy/b3.htm (updated 200423 January 2008).
  16. 16.
    Schmahmann JD, Gardner R, MacMore J, Vangel MG. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov Disord. 2009;24(12):1820–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Langrova J, Kuba M, Kremlacek J, Kubova Z, Vit F. Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vis Res. 2006;46(4):536–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Bauer PO, Kotliarova SE, Matoska V, Musova Z, Hedvicakova P, Boday A, et al. Fluorescent multiplex PCR—fast method for autosomal dominant spinocerebellar ataxias screening. Genetika. 2005;41(6):830–7.PubMedGoogle Scholar
  19. 19.
    Brainard DH. The psychophysics toolbox. Spat Vis. 1997;10(4):433–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Kremlacek J, Kuba M, Kubova Z, Chlubnova J. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol. 2004;109(2):169–75.CrossRefPubMedGoogle Scholar
  21. 21.
    Urban A, Kremlacek J, Masopust J, Libiger J. Visual mismatch negativity among patients with schizophrenia. Schizophr Res. 2008;102(1–3):320–8.CrossRefPubMedGoogle Scholar
  22. 22.
    van de Warrenburg BPC, Hendriks H, Dürr A, Zuijlen MCAv, Stevanin G, Camuzat A, et al. Age at onset variance analysis in spinocerebellar ataxias: a study in a Dutch–French cohort. Ann Neurol. 2005;57(4):505–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Di Russo F, Pitzalis S, Spitoni G, Aprile T, Patria F, Spinelli D, et al. Identification of the neural sources of the pattern-reversal VEP. Neuroimage. 2005;24(3):874–86.CrossRefPubMedGoogle Scholar
  24. 24.
    Restivo DA, Lanza S, Saponara R, Rapisarda G, Giuffrida S, Palmeri A. Changes of cortical excitability of human motor cortex in spinocerebellar ataxia type 2: a study with paired transcranial magnetic stimulation. J Neurol Sci. 2002;198(1–2):87–92. doi:10.1016/S0022-510X(02)00086-2.CrossRefPubMedGoogle Scholar
  25. 25.
    Brenneis C, Bosch SM, Schocke M, Wenning GK, Poewe W. Atrophy pattern in SCA2 determined by voxel-based morphometry. NeuroReport. 2003;14(14):1799–802.CrossRefPubMedGoogle Scholar
  26. 26.
    Manto M-U. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2–6. doi:10.1080/14734220510007914.CrossRefPubMedGoogle Scholar
  27. 27.
    Yiş U, Dirik E, Kurul S, Eken A, Başak A. Two young sisters with spinocerebellar ataxia type 2 showing different clinical progression of disease. Cerebellum. 2009;8(2):127–9. doi:10.1007/s12311-008-0080-6.CrossRefPubMedGoogle Scholar
  28. 28.
    Velázquez-Perez L, Rodríguez-Labrada R, Canales-Ochoa N, Sanchez-Cruz G, Fernandez-Ruiz J, Montero JM, et al. Progression markers of spinocerebellar ataxia 2. A twenty years neurophysiological follow up study. J Neurol Sci. 2010;290(1–2):22–6. doi:10.1016/j.jns.2009.12.013.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jan Kremlacek
    • 1
    • 2
  • Martin Valis
    • 2
  • Jiri Masopust
    • 3
  • Ales Urban
    • 3
  • Alena Zumrova
    • 4
  • Radomir Talab
    • 2
  • Miroslav Kuba
    • 1
  • Zuzana Kubova
    • 1
  • Jana Langrova
    • 1
  1. 1.Department of Pathophysiology, Faculty of MedicineCharles University in PragueHradec KraloveCzech Republic
  2. 2.Department of Neurology, Faculty of MedicineCharles University in Prague, University Hospital Hradec KraloveHradec KraloveCzech Republic
  3. 3.Department of Psychiatry, Faculty of MedicineCharles University in Prague, University Hospital Hradec KraloveHradec KraloveCzech Republic
  4. 4.Neurogenetic Centre, 2nd Faculty of Medicine of Charles University and Faculty Hospital MotolPragueCzech Republic

Personalised recommendations