The Cerebellum

, Volume 10, Issue 1, pp 1–8 | Cite as

Combined Therapy with Idebenone and Deferiprone in Patients with Friedreich’s Ataxia

  • Daniel Velasco-Sánchez
  • Asuncion Aracil
  • Raquel Montero
  • Ana Mas
  • Lorenzo Jiménez
  • Mar O’Callaghan
  • Maria Tondo
  • Antoni Capdevila
  • Josep Blanch
  • Rafael Artuch
  • Mercedes Pineda


Iron chelators are a new therapeutical approach for patients with Friedreich’s ataxia, on the basis that oxidative cell damage that occurs in these patients is due to the increasing deposits of mitochondrial iron pools. The objective of the study was to evaluate the effects of the combined therapy of idebenone and low oral doses of deferiprone on the neurological signs and cardiac function parameters. This study was designed as a prospective open-label single-arm study. Twenty Friedreich’s ataxia patients were treated with idebenone (20 mg/kg/day) and deferiprone (20 mg/kg/day) for 11 months. Patients were evaluated before the start and throughout the study with the International Cooperative Ataxia Rating Scale (ICARS) scores, echocardiographic measurements and MRI (magnetic resonance imaging) techniques to asses brain iron deposits in the dentate nucleus. No significant differences were observed in total ICARS scores when comparing baseline status and the end of the study in the whole group of patients. Posture and gait scores increased significantly after 11 months of therapy (Wilcoxon’s test, p = 0.04) and kinetic function improved significantly (Wilcoxon’s test, p = 0.015). Echocardiography data showed a significant reduction of the interventricular septum thickness (Wilcoxon’s test, p = 0.04) and in the left ventricular mass index (Wilcoxon’s test, p = 0.038) after the start of the therapy. The MRI values in the dentate nucleus showed a statistically significant reduction (Wilcoxon’s test p = 0.007) between baseline conditions and after 11 months of the therapy. Combined therapy with idebenone and deferiprone in patients with FDRA indicates a stabilizing effect in neurologic dysfunctions due to an improvement in the kinetic functions, with a worsening of gait and posture scores. Heart hypertrophy parameters and iron deposits in dentate nucleus improved significantly. Combined therapy was well tolerated with mild side effects, apart from the risk of neutropenia and progressive reduction of plasma iron parameters.


Friedreich’s ataxia Iron chelator Deferiprone Idebenone 


  1. 1.
    Chamberlain S, Shaw J, Rowland A, Wallis J, South S, Nakamura Y, et al. Mapping of mutation causing Friedreich’s ataxia to human chromosome 9. Nature. 1988;334(6179):248–50.CrossRefPubMedGoogle Scholar
  2. 2.
    Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Opal P, Y Zoghbi H, Cruse RP. Friedreich ataxia (monograph on the Internet). Uptodate. 2008. Available at: Accessed 21 April 2008
  4. 4.
    Pandolfo M. Friedreich ataxia. Semin Pediatr Neurol. 2003;10(3):163–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Dutka DP, Donnelly JE, Nihoyannopoulos P, Oakley CM, Nunez DJ. Marked variation in the cardiomyopathy associated with Friedreich’s ataxia. Heart. 1999;81(2):141–7.PubMedGoogle Scholar
  6. 6.
    Lodi R, Hart PE, Rajagopalan B, Taylor DJ, Crilley JG, Bradley JL, et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol. 2001;49(5):590–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S, Brunelle F, et al. Selective iron chelation in Friedreich ataxia Biological and clinical implications. Blood. 2007;110(1):401–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Hart PE, Lodi R, Rajagopalan B, Bradley JL, Crilley JG, Turner C, et al. Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol. 2005;62(4):621–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Rustin P, Rotig A, Munnich A, Sidi D. Heart hypertrophy and function are improved by idebenone in Friedreich’s ataxia. Free Radic Res. 2002;36(4):467–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Artuch R, Aracil A, Mas A, Colome C, Rissech M, Monros E, et al. Friedreich’s ataxia: idebenone treatment in early stage patients. Neuropediatrics. 2002;33(4):190–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Pineda M, Arpa J, Montero R, Aracil A, Domínguez F, Galván M, et al. Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol. 2008;12(6):470–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Ribaï P, Pousset F, Tanguy ML, Rivaud-Pechoux S, Le Ber I, et al. Neurological, cardiological and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow up. Arch Neurol. 2007;64(4):558–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Hausse AO, Aggoun Y, Bonnet D, Sidi D, Munnich A, Rötig A, et al. Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart. 2002;87(4):346–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Mariotti C, Solari A, Torta D, Marano L, Fiorentini C, Di Donato S. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology. 2003;60(10):1676–9.PubMedGoogle Scholar
  15. 15.
    Rustin P, Bonnet D, Rötig A, Munnich A, Sidi D. Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology. 2004;62(3):524–5.PubMedGoogle Scholar
  16. 16.
    Di Prospero NA, Baker A, Jeffries N, Fischbeck KH. Neurological effects of high-dose idebenone in patients with Friedreich ataxia: a randomized, placebo-controlled trial. Lancet Neurol. 2007;6(10):878–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F, et al. The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet. 1999;8(3):425–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Richardson DR, Mouralian C, Ponka P, Becker E. Development of potential iron chelators for the treatment of Friedreich’s ataxia: ligands that mobilize mitochondrial iron. Biochim Biophys Acta. 2001;1536(2–3):133–40.PubMedGoogle Scholar
  19. 19.
    Richardson DR. Friedreich’s ataxia: iron chelators that target the mitochondrion as a therapeutic strategy? Expert Opin Investig Drugs. 2003;12(2):235–45.CrossRefPubMedGoogle Scholar
  20. 20.
    Breuer W, Ermers MJ, Pootrakul P, Abramov A, Hershko C, Cabantchik ZI. Desferrioxamine-chelatable iron, a component of serum non-transferrin-bound iron, used for assessing chelation therapy. Blood. 2001;97(3):792–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Waldmeier PC, Buchle AM, Steulet AF. Inhibition of catechol-O-methyltransferase (COMT) as well as tyrosine and tryptophan hydroxylase by the orally active iron chelator, 1, 2-dimethyl-3-hydroxypyridin-4-one (L1, CP20), in rat brain in vivo. Biochem Pharmacol. 1993;45(12):2417–24.CrossRefPubMedGoogle Scholar
  22. 22.
    Glickstein H, El RB, Link G, Breuer W, Konijn AM, Hershko C, et al. Action of chelators in iron-loaded cardiac cells: accessibility to intracellular labile iron and functional consequences. Blood. 2006;108(9):3195–203.CrossRefPubMedGoogle Scholar
  23. 23.
    Glickstein H, El RB, Shvartsman M, Cabantchik ZI. Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood. 2005;106(9):3242–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Sohn YS, Breuer W, Munnich A, Cabantchik ZI. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood. 2008;111(3):1690–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Kakhlon O, Manning H, Breuer W, Melamed-Book N, Lu C, Cortopassi G, et al. Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation. Blood. 2008;112(13):5219–27.CrossRefPubMedGoogle Scholar
  26. 26.
    Hershko CM, Link GM, Konijn AM, Cabantchik ZI. Iron chelation therapy. Curr Hematol Rep. 2005;4(2):110–6.PubMedGoogle Scholar
  27. 27.
    Cohen AR, Galanello R, Piga A, Dipalma A, Vullo C, Tricta F. Safety profile of the oral iron chelator deferiprone: a multicentre study. Br J Haematol. 2000;108(2):305–12.CrossRefPubMedGoogle Scholar
  28. 28.
    Ceci A, Baiardi P, Felisi M, Cappellini MD, Carnelli V, De Sanctis V, et al. The 29 safety and effectiveness of deferiprone in a large-scale, 3-year study in Italian patients. Br J Haematol. 2002;118(1):330–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Al-Refaie FN, Hershko C, Hoffbrand AV, Kosaryan M, Olivieri NF, Tondury P, et al. Results of long-term deferiprone (L1) therapy: a report by the international study group on oral iron chelators. Br J Haematol. 1995;91(1):224–9.CrossRefPubMedGoogle Scholar
  30. 30.
    The Ataxia Neuropharmacology Committee of the World Federation of Neurology. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145(2):205–11.CrossRefGoogle Scholar
  31. 31.
    Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedreich’s ataxia. Ann Neurol. 1999;46(1):123–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Haacke EM, Cheng NY, House MJ, Liu Q, Neelavalli J, Ogg Rj, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging. 2005;23(1):1–25.CrossRefPubMedGoogle Scholar
  33. 33.
    Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed. 2004;17(7):433–45.CrossRefPubMedGoogle Scholar
  34. 34.
    Artuch R, Colomé C, Vilaseca MA, Aracil A, Pineda M. Monitoring of idebenone treatment in patients with Friedreich’s ataxia by high-pressure liquid chromatography with electrochemical detection. J Neurosci Methods. 2002;115(1):63–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Schulz JB, Di Prospero NA, Fischbeck K. Clinical experience with high-dose idebenone in Friedreich ataxia. J Neurol. 2009;256 Suppl 1:42–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Boesch S, Sturm B, Hering S, Goldenberg H, Poewe W, Scheiber-Mojdehkar B. Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol. 2007;62(5):521–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Boesch S, Sturm B, Hering S, Scheiber-Mojdehkar B, Steinkellner H, Goldenberg H, et al. Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord. 2008;23(13):1940–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Marmolino D, Manto M, Acquaviva F, Vergara P, Ravella A, Monticelli A, et al. PGC-1alpha down-regulation affects the antioxidant response in Friedreich’s ataxia. PLoS One. 2010;5(4):e10025.CrossRefPubMedGoogle Scholar
  39. 39.
    Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol. 2006;2(10):551–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Xu C, Soragni E, Chou CJ, Herman D, Plasterer HL, Rusche JR, et al. Chemical probes identify a role for histone deacetylase three in Friedreich’s ataxia gene silencing. Chem Biol. 2009;16(9):980–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Fahey MC, Corben L, Collins V, Churchyard AJ, Delatycki MB. How is disease progress in Friedreich’s ataxia best measured? A study of four rating scales. J Neurol Neurosurg Psychiatry. 2007;78(4):411–3.CrossRefPubMedGoogle Scholar
  42. 42.
    Meyer C, Schmid G, Görlitz S, Ernst M, Wilkens C, Wilhelms I, et al. Cardiomyopathy in Friedreich’s ataxia—assessment by cardiac MRI. Mov Disord. 2007;22(11):1615–22.CrossRefPubMedGoogle Scholar
  43. 43.
    Goncalves S, Paupe V, Dassa EP, Rustin P. Deferiprone targets aconitase: implication for Friedreich’s ataxia treatment. BMC Neurol. 2008;8:20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Daniel Velasco-Sánchez
    • 1
    • 2
  • Asuncion Aracil
    • 3
  • Raquel Montero
    • 4
  • Ana Mas
    • 5
  • Lorenzo Jiménez
    • 1
  • Mar O’Callaghan
    • 3
  • Maria Tondo
    • 4
  • Antoni Capdevila
    • 6
  • Josep Blanch
    • 6
  • Rafael Artuch
    • 4
  • Mercedes Pineda
    • 3
  1. 1.Cardiology Department, Sant Joan de Déu Hospital and the University of BarcelonaBarcelonaSpain
  2. 2.Sant Joan de Déu FoundationBarcelonaSpain
  3. 3.Neuropediatrics DepartmentSant Joan de Déu Hospital, the University of Barcelona, and Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos IIIBarcelonaSpain
  4. 4.Biochemistry DepartmentSant Joan de Déu Hospital and CIBERERBarcelonaSpain
  5. 5.Pharmacy DepartmentSant Joan de Déu Hospital and the University of BarcelonaBarcelonaSpain
  6. 6.Radiology DepartmentSant Joan de Déu Hospital and the University of BarcelonaBarcelonaSpain

Personalised recommendations