The Cerebellum

, Volume 9, Issue 4, pp 499–529 | Cite as

Adaptation, Expertise, and Giftedness: Towards an Understanding of Cortical, Subcortical, and Cerebellar Network Contributions

  • Leonard F. Koziol
  • Deborah Ely Budding
  • Dana Chidekel


Current cortico-centric models of cognition lack a cohesive neuroanatomic framework that sufficiently considers overlapping levels of function, from “pathological” through “normal” to “gifted” or exceptional ability. While most cognitive theories presume an evolutionary context, few actively consider the process of adaptation, including concepts of neurodevelopment. Further, the frequent co-occurrence of “gifted” and “pathological” function is difficult to explain from a cortico-centric point of view. This comprehensive review paper proposes a framework that includes the brain’s vertical organization and considers “giftedness” from an evolutionary and neurodevelopmental vantage point. We begin by discussing the current cortico-centric model of cognition and its relationship to intelligence. We then review an integrated, dual-tiered model of cognition that better explains the process of adaptation by simultaneously allowing for both stimulus-based processing and higher-order cognitive control. We consider the role of the basal ganglia within this model, particularly in relation to reward circuitry and instrumental learning. We review the important role of white matter tracts in relation to speed of adaptation and development of behavioral mastery. We examine the cerebellum’s critical role in behavioral refinement and in cognitive and behavioral automation, particularly in relation to expertise and giftedness. We conclude this integrated model of brain function by considering the savant syndrome, which we believe is best understood within the context of a dual-tiered model of cognition that allows for automaticity in adaptation as well as higher-order executive control.


Cerebellum Basal ganglia Working memory Expertise Giftedness Intelligence 



The authors would like to acknowledge Dr. Frederick Toates and Dr. Michael Frank for their editorial contributions and Jessica Chang for her research assistance.

Conflicts of interest

The authors have no conflicts of interest associated with this manuscript.


  1. 1.
    Kolb B, Whishaw IQ. Fundamentals of human neuropsychology. New York: Worth; 2008.Google Scholar
  2. 2.
    Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12(7–8):961–74.PubMedGoogle Scholar
  3. 3.
    Cotterill RM. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Prog Neurobiol. 2001;64(1):1–33.PubMedGoogle Scholar
  4. 4.
    Vandervert LR, Schimpf PH, Liu H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creat Res J. 2007;19(1):1–18.Google Scholar
  5. 5.
    Limperopoulos C, du Plessis AJ. Injury to the developing cerebellum: mechanisms and consequences. NeoReviews. 2007;8(10):e409–17.Google Scholar
  6. 6.
    Parker J, Mitchell A, Kalpakidou A, Walshe M, Jung HY, Nosarti C, et al. Cerebellar growth and behavioural & neuropsychological outcome in preterm adolescents. Brain. 2008;131(Pt 5):1344–51.PubMedGoogle Scholar
  7. 7.
    AlOtaibi SF, Blaser S, MacGregor DL. Neurological complications of kernicterus. Can J Neurol Sci. 2005;32(3):311–5.PubMedGoogle Scholar
  8. 8.
    Ahlfors CE, Amin SB, Parker AE. Unbound bilirubin predicts abnormal automated auditory brainstem response in a diverse newborn population. J Perinatol. 2009;29(4):305–9.PubMedGoogle Scholar
  9. 9.
    Amin SB, Prinzing D, Myers G. Hyperbilirubinemia and language delay in premature infants. Pediatrics. 2009;123(1):327–31.PubMedGoogle Scholar
  10. 10.
    Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, et al. Intellectual ability and cortical development in children and adolescents. Nature. 2006;440(7084):676–9.PubMedGoogle Scholar
  11. 11.
    Rubia K. Neuro-anatomic evidence for the maturational delay hypothesis of ADHD. Proc Natl Acad Sci USA. 2007;104(50):19663–4.PubMedGoogle Scholar
  12. 12.
    Supekar K, Musen M, Menon V. Development of large-scale functional brain networks in children. PLoS Biol. 2009;7(7):e1000157.PubMedGoogle Scholar
  13. 13.
    Northoff G, Panksepp J. The trans-species concept of self and the subcortical–cortical midline system. Trends Cogn Sci. 2008;12(7):259–64.PubMedGoogle Scholar
  14. 14.
    Alcaro A, Panksepp J, Witczak J, Hayes DJ, Northoff G. Is subcortical–cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci Biobehav Rev. 2010;34:592–605.Google Scholar
  15. 15.
    Watt DF, Panksepp J. Depression: an evolutionarily conserved mechanism to terminate separation distress? A review of aminergic, peptidergic, and neural network perspectives. Neuropsychoanalysis. 2009;11(1):7–51.Google Scholar
  16. 16.
    Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat Neurosci. 2009;12(8):1062–8.PubMedGoogle Scholar
  17. 17.
    Doll BB, Jacobs WJ, Sanfey AG, Frank MJ. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation. Brain Res. 2009;1299:74–94.PubMedGoogle Scholar
  18. 18.
    Schmidt GL, Seger CA. Neural correlates of metaphor processing: the roles of figurativeness, familiarity and difficulty. Brain Cogn. 2009;71(3):375–86.PubMedGoogle Scholar
  19. 19.
    Seger CA. The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In: Groenewegen H, Berendse H, editors. The basal ganglia IX: proceedings of the 9th Triennial Meeting of the International Basal Ganglia Society. New York: Springer; 2009.Google Scholar
  20. 20.
    Houk JC. Agents of the mind. Biol Cybern. 2005;92(6):427–37.PubMedGoogle Scholar
  21. 21.
    Ashby FG, O'Brien JB. Category learning and multiple memory systems. Trends Cogn Sci. 2005;9(2):83–9.PubMedGoogle Scholar
  22. 22.
    Yomogida Y, Sugiura M, Sassa Y, Wakusawa K, Sekiguchi A, Fukushima A, et al. The neural basis of agency: an fMRI study. Neuroimage. 2010;50:198–207.Google Scholar
  23. 23.
    Chatham CH, Frank MJ, Munakata Y. Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proc Natl Acad Sci USA. 2009;106(14):5529–33.PubMedGoogle Scholar
  24. 24.
    Aron AR, Poldrack RA. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J Neurosci. 2006;26(9):2424–33.PubMedGoogle Scholar
  25. 25.
    Baillieux H, Vandervliet EJ, Manto M, Parizel PM, De Deyn PP, Marien P. Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain Lang. 2009;108(2):122–32.PubMedGoogle Scholar
  26. 26.
    Baldacara L, Borgio JG, de Lacerda AL, Jackowski AP. Cerebellum and psychiatric disorders. Rev Bras Psiquiatr. 2008;30(3):281–9.PubMedGoogle Scholar
  27. 27.
    Bush G. Neuroimaging of attention deficit hyperactivity disorder: can new imaging findings be integrated in clinical practice? Child Adolesc Psychiatr Clin N Am. 2008;17(2):385–404. x.PubMedGoogle Scholar
  28. 28.
    Schiffman J, Sorensen HJ, Maeda J, Mortensen EL, Victoroff J, Hayashi K, et al. Childhood motor coordination and adult schizophrenia spectrum disorders. Am J Psychiatry. 2009;166(9):1041–7.PubMedGoogle Scholar
  29. 29.
    Whalley HC, Gountouna VE, Hall J, McIntosh A, Whyte MC, Simonotto E, et al. Correlations between fMRI activation and individual psychotic symptoms in un-medicated subjects at high genetic risk of schizophrenia. BMC Psychiatry. 2007;7:61.PubMedGoogle Scholar
  30. 30.
    Bradshaw JL. Developmental disorders of the frontostriatal system: neuropsychological, neuropsychiatric and evolutionary perspectives. Philadelphia: Taylor & Francis; 2001.Google Scholar
  31. 31.
    Heimer L, Van Hoesen GW, Trimble M, Zahm DS. Anatomy of neuropsychiatry: the new anatomy of the basal forebrain and its implications for neuropsychiatric illness. San Diego, CA: Academic; 2008.Google Scholar
  32. 32.
    Hoppenbrouwers SS, Schutter DJ, Fitzgerald PB, Chen R, Daskalakis ZJ. The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Res Rev. 2008;59:185–200.Google Scholar
  33. 33.
    Ansari D. Neurocognitive approaches to developmental disorders of numerical and mathematical cognition: the perils of neglecting the role of development. Learn individ Differ. 2010;20:123–9.Google Scholar
  34. 34.
    Nicolson R, Fawcett AJ, Dean P. Dyslexia, development and the cerebellum. Trends Neurosci. 2001;24(9):515–6.PubMedGoogle Scholar
  35. 35.
    Ullman MT. Contributions of memory circuits to language: the declarative/procedural model. Cognition. 2004;92(1–2):231–70.PubMedGoogle Scholar
  36. 36.
    Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.PubMedGoogle Scholar
  37. 37.
    Rosca EC. Arithmetic procedural knowledge: a cortico-subcortical circuit. Brain Res. 2009;1302:148–56.PubMedGoogle Scholar
  38. 38.
    Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010;35(1):147–68.PubMedGoogle Scholar
  39. 39.
    Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009.Google Scholar
  40. 40.
    Miller R. A theory of the basal ganglia and their disorders. Boca Raton: CRC; 2008.Google Scholar
  41. 41.
    Merriam-Webster I. Merriam-Webster's collegiate dictionary. Springfield, MA: Merriam-Webster; 2003.Google Scholar
  42. 42.
    Winner E. Gifted children: myths and realities. New York: Basic Books; 1996.Google Scholar
  43. 43.
    Ericsson AK, Nandagopal K, Roring RW. Toward a science of exceptional achievement: attaining superior performance through deliberate practice. Ann N Y Acad Sci. 2009;1172:199–217.Google Scholar
  44. 44.
    Zhu Q, Song Y, Hu S, Li X, Tian M, Zhen Z et al. Heritability of the specific cognitive ability of face perception. Curr Biol. 2010;20:137–42.Google Scholar
  45. 45.
    Lezak MD, Loring DW. Neuropsychological assessment. USA: Oxford University Press; 2004.Google Scholar
  46. 46.
    Lezak MD. Neuropsychological assessment. New York: Oxford University Press; 1995. p. 544–6.Google Scholar
  47. 47.
    Wechsler D. Manual for the Wechsler intelligence scale for children. San Antonio, TX: The Psychological Corporation; 1991.Google Scholar
  48. 48.
    Winner E. Gifted children: myths and realities. New York: Basic Books; 1996.Google Scholar
  49. 49.
    Kinsbourne M. Overfocusing: an apparent subtype of attention deficit hyperactive disorder. In: Amir N, Rapin J, Branski D, editors. Pediatric Neurology: Behavior and cognition of the child with brain dysfunction. Vol. 1. Basel, Switzerland: Karger; 1991. p. 18–35.Google Scholar
  50. 50.
    Feldman DH, Goldsmith LT. Nature's gambit: child prodigies and the development of human potential. New York: Teachers College Press. 1991.Google Scholar
  51. 51.
    Vandervert LR. The appearance of the child prodigy 10,000 years ago: an evolutionary and developmental explanation. J Mind Behav J Mind Behav. 2009;30(1–2):15–32.Google Scholar
  52. 52.
    Creem-Regehr SH. Sensory–motor and cognitive functions of the human posterior parietal cortex involved in manual actions. Neurobiol Learn Mem. 2009;91(2):166–71.PubMedGoogle Scholar
  53. 53.
    Londei A, D'Ausilio A, Basso D, Sestieri C, Gratta CD, Romani GL et al. Sensory-motor brain network connectivity for speech comprehension. Hum Brain Mapp. 2010;31(4):567–580.Google Scholar
  54. 54.
    Renier LA, Anurova I, De Volder AG, Carlson S, VanMeter J, Rauschecker JP. Multisensory integration of sounds and vibrotactile stimuli in processing streams for "what" and "where". J Neurosci. 2009;29(35):10950–60.PubMedGoogle Scholar
  55. 55.
    Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82(3):171–7.PubMedGoogle Scholar
  56. 56.
    Andreasen NC, Flaum M, Swayze V, O'Leary DS, Alliger R, Cohen G, et al. Intelligence and brain structure in normal individuals. Am J Psychiatry. 1993;150(1):130–4.PubMedGoogle Scholar
  57. 57.
    Kurtz BE, Weinert FE. Metamemory, memory performance, and causal attributions in gifted and average children. J Exp Child Psychol. 1989;48(1):45–61.PubMedGoogle Scholar
  58. 58.
    Wennekers T, Palm G. Syntactic sequencing in Hebbian cell assemblies. Cogn Neurodyn. 2009;3(4):429–441.Google Scholar
  59. 59.
    Wennekers T, Garagnani M, Pulvermuller F. Language models based on Hebbian cell assemblies. J Physiol Paris. 2006;100(1–3):16–30.PubMedGoogle Scholar
  60. 60.
    Ahmed B, Hanazawa A, Undeman C, Eriksson D, Valentiniene S, Roland PE. Cortical dynamics subserving visual apparent motion. Cereb Cortex. 2008;18(12):2796–810.PubMedGoogle Scholar
  61. 61.
    Roland PE, Eriksson L, Stone-Elander S, Widen L. Does mental activity change the oxidative metabolism of the brain? J Neurosci. 1987;7(8):2373–89.PubMedGoogle Scholar
  62. 62.
    Roland PE, Friberg L. Localization of cortical areas activated by thinking. J Neurophysiol. 1985;53(5):1219–43.PubMedGoogle Scholar
  63. 63.
    Luders E, Narr KL, Thompson PM, Toga AW. Neuroanatomical correlates of intelligence. Intelligence. 2009;37(2):156–63.PubMedGoogle Scholar
  64. 64.
    Thompson P, Cannon TD, Toga AW. Mapping genetic influences on human brain structure. Ann Med. 2002;34(7–8):523–36.PubMedGoogle Scholar
  65. 65.
    Turkheimer E, Haley A, Waldron M, D'Onofrio B, Gottesman II. Socioeconomic status modifies heritability of IQ in young children. Psychol Sci. 2003;14(6):623–8.PubMedGoogle Scholar
  66. 66.
    Ivanovic DM, Leiva BP, Perez HT, Olivares MG, Diaz NS, Urrutia MS, et al. Head size and intelligence, learning, nutritional status and brain development. Head, IQ, learning, nutrition and brain. Neuropsychologia. 2004;42(8):1118–31.PubMedGoogle Scholar
  67. 67.
    Hulshoff Pol HE, Schnack HG, Posthuma D, Mandl RC, Baare WF, Van OC, et al. Genetic contributions to human brain morphology and intelligence. J Neurosci. 2006;4;26(40):10235–42.Google Scholar
  68. 68.
    Gray JR, Thompson PM. Neurobiology of intelligence: science and ethics. Nat Rev Neurosci. 2004;5(6):471–82.PubMedGoogle Scholar
  69. 69.
    Frangou S, Chitins X, Williams SC. Mapping IQ and gray matter density in healthy young people. Neuroimage. 2004;23(3):800–5.PubMedGoogle Scholar
  70. 70.
    Chiang MC, Barysheva M, Shattuck DW, Lee AD, Madsen SK, Avedissian C, et al. Genetics of brain fiber architecture and intellectual performance. J Neurosci. 2009;29(7):2212–24.PubMedGoogle Scholar
  71. 71.
    Salthouse TA, Pink JE, Tucker-Drob EM. Contextual analysis of fluid intelligence. Intelligence. 2008;36(5):464–86.PubMedGoogle Scholar
  72. 72.
    Saling LL, Phillips JG. Automatic behaviour: efficient not mindless. Brain Res Bull. 2007;73(1–3):1–20.PubMedGoogle Scholar
  73. 73.
    Narr KL, Woods RP, Lin J, Kim J, Phillips OR, Del'homme M, et al. Widespread cortical thinning is a robust anatomical marker for attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psych. 2009;48(10):1014–1022.Google Scholar
  74. 74.
    Colom R, Jung RE, Haier RJ. General intelligence and memory span: evidence for a common neuroanatomic framework. Cogn Neuropsychol. 2007;24(8):867–78.PubMedGoogle Scholar
  75. 75.
    Jung RE, Haier RJ. The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci. 2007;30(2):135–54.PubMedGoogle Scholar
  76. 76.
    Jung RE, Segall JM, Bockholt HJ, Flores RA, Smith SM, Chavez RS, et al. Neuroanatomy of creativity. Hum Brain Mapp. 2010;31(3):398.PubMedGoogle Scholar
  77. 77.
    Jung RE, Grazioplene R, Caprihan A, Chavez RS, Haier RJ. White matter integrity, creativity, and psychopathology: disentangling constructs with diffusion tensor imaging. 2010. PLoS ONE 5(3). doi: 10.1371/journal.pone.009818.
  78. 78.
    Diamond MC, Scheibel AB, Murphy Jr GM, Harvey T. On the brain of a scientist: Albert Einstein. Exp Neurol. 1985;88(1):198–204.PubMedGoogle Scholar
  79. 79.
    Galaburda AM. Albert Einstein's brain. Lancet. 1999;354(9192):1821.PubMedGoogle Scholar
  80. 80.
    Hines T. Further on Einstein's brain. Exp Neurol. 1998;150(2):343–4.PubMedGoogle Scholar
  81. 81.
    Falk D. New information about Albert Einstein's brain. Front Evol Neurosci. 2009;1:3.PubMedGoogle Scholar
  82. 82.
    Grabner RH, Neubauer AC, Stern E. Superior performance and neural efficiency: the impact of intelligence and expertise. Brain Res Bull. 2006;69(4):422–39.PubMedGoogle Scholar
  83. 83.
    Neubauer AC, Fink A. Intelligence and neural efficiency. Neurosci Biobehav Rev. 2009;33(7):1004–23.PubMedGoogle Scholar
  84. 84.
    Macneilage PF, Rogers LJ, Vallortigara G. Origins of the left & right brain. Sci Am. 2009;301(1):60–7.PubMedGoogle Scholar
  85. 85.
    Podell K, Lovell M, Goldberg E. Lateralization of frontal lobe functions. In: Salloway SP, Malloy PF, Duffy JD, editors. The frontal lobes and neuropsychiatric illness. Washington, DC: American Psychiatric; 2001. p. 83–100.Google Scholar
  86. 86.
    Toates F. A model of the hierarchy of behaviour, cognition, and consciousness. Conscious Cogn. 2006;15(1):75–118.PubMedGoogle Scholar
  87. 87.
    Toates F. "In two minds"—consideration of evolutionary precursors permits a more integrative theory. Trends Cogn Sci. 2004;8(2):57.PubMedGoogle Scholar
  88. 88.
    Goel V, Tierney M, Sheesley L, Bartolo A, Vartanian O, Grafman J. Hemispheric specialization in human prefrontal cortex for resolving certain and uncertain inferences. Cereb Cortex. 2007;17(10):2245–50.PubMedGoogle Scholar
  89. 89.
    Hikosaka O, Isoda M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn Sci. 2010;14(4):154–161.PubMedGoogle Scholar
  90. 90.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedGoogle Scholar
  91. 91.
    Vandervert LR, Schimpf PH, Liu H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creat Res J. 2007;19(1):1–18.Google Scholar
  92. 92.
    Maroof A, Anderson S. The origins and specification of cortical interneurons. Developmental Plasticity of Inhibitory Circuitry. 2009. p. 13–26.Google Scholar
  93. 93.
    Parvizi J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci. 2009;13(8):354–9.PubMedGoogle Scholar
  94. 94.
    Laurent G. 1. Shall we even understand the fly’s brain? 23 problems in systems. Neuroscience. 2006;1:3–22.Google Scholar
  95. 95.
    Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann NY Acad Sci. 2008;1142:266–309.PubMedGoogle Scholar
  96. 96.
    Mendoza J, Foundas AL. Clinical neuroanatomy: a neurobehavioral approach. Springer; 2007.Google Scholar
  97. 97.
    Hof PR, Trapp BD, DeVellis J, Claudio L, Coleman DR. Cellular components of nervous tissue. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ, editors. Fundamental neuroscience. San Diego. 2003. p. 49–78.Google Scholar
  98. 98.
    Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity. Nature. 2003;423(6937):288–93.PubMedGoogle Scholar
  99. 99.
    Dantzker JL, Callaway EM. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci. 2000;3(7):701–7.PubMedGoogle Scholar
  100. 100.
    Tamas G, Buhl EH, L÷rincz A, Somogyi P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neuroscience. 2000;3(4):366–71.PubMedGoogle Scholar
  101. 101.
    Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.PubMedGoogle Scholar
  102. 102.
    Ashby FG, Ennis JM, Spiering BJ. A neurobiological theory of automaticity in perceptual categorization. Psychol Rev. 2007;114(3):632–56.PubMedGoogle Scholar
  103. 103.
    Ashby FG, Turner BO, Horvitz JC. Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci. 2010;14(5):208–215.Google Scholar
  104. 104.
    Wallis JD, Kennerley SW. Heterogeneous reward signals in prefrontal cortex. Curr Opin Neurobiol. 2010;20(2):191–198.Google Scholar
  105. 105.
    Burkhalter A. Many specialists for suppressing cortical excitation. Front Neurosci. 2008;2(2):155–67.PubMedGoogle Scholar
  106. 106.
    Okun M, Lampl I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci. 2008;11(5):535–7.PubMedGoogle Scholar
  107. 107.
    Higgins ES, George MS. The neuroscience of clinical psychiatry: the pathophysiology of behavior and mental illness. Lippincott Williams & Wilkins; 2007.Google Scholar
  108. 108.
    Ponzi A. Dynamical model of salience gated working memory, action selection and reinforcement based on basal ganglia and dopamine feedback. Neural Netw. 2008;21(2–3):322–30.PubMedGoogle Scholar
  109. 109.
    Valentin VV, O'Doherty JP. Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. J Neurophysiol. 2009;102(6):3384–91.PubMedGoogle Scholar
  110. 110.
    Robinson OJ, Frank MJ, Sahakian BJ, Cools R. Dissociable responses to punishment in distinct striatal regions during reversal learning. NeuroImage. 2010;51(4):1459–1467.Google Scholar
  111. 111.
    Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 1999;89(4):1009–23.PubMedGoogle Scholar
  112. 112.
    Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, et al. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1573–83.PubMedGoogle Scholar
  113. 113.
    Aarts E, Roelofs A, van TM. Anticipatory activity in anterior cingulate cortex can be independent of conflict and error likelihood. J Neurosci. 2008;28(18):4671–8.PubMedGoogle Scholar
  114. 114.
    Chaudhry AM, Parkinson JA, Hinton EC, Owen AM, Roberts AC. Preference judgements involve a network of structures within frontal, cingulate and insula cortices. Eur J Neurosci. 2009;29(5):1047–55.PubMedGoogle Scholar
  115. 115.
    Tana MG, Montin E, Cerutti S, Bianchi AM. Exploring cortical attentional system by using fMRI during a continuous perfomance test. Comput Intell Neurosci. 2010;2010:329213.Google Scholar
  116. 116.
    Kelly AM, Di MA, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, et al. Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex. 2009;19(3):640–57.PubMedGoogle Scholar
  117. 117.
    Lichter DG, Cummings JL. Frontal–subcortical circuits in psychiatric and neurological disorders. New York: Guilford. 2001.Google Scholar
  118. 118.
    Bonelli RM, Cummings JL. Frontal–subcortical circuitry and behavior. Dialogues Clin Neurosci. 2007;9(2):141.PubMedGoogle Scholar
  119. 119.
    Utter AA, Basso MA. The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev. 2008;32(3):333–42.PubMedGoogle Scholar
  120. 120.
    Lichter DG, Cummings JL. Introduction and overview. In: Lichter DG, Cummings JL, editors. Frontal–subcortical circuits in psychiatric and neurological disorders. New York: Guilford; 2001. p. 1–43.Google Scholar
  121. 121.
    Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.PubMedGoogle Scholar
  122. 122.
    Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.PubMedGoogle Scholar
  123. 123.
    Utter AA, Basso MA. The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev. 2008;32(3):333–42.PubMedGoogle Scholar
  124. 124.
    Anderson JR, Fincham JM, Qin Y, Stocco A. A central circuit of the mind. Trends Cogn Sci. 2008;12(4):136–43.PubMedGoogle Scholar
  125. 125.
    Banich MT. Cognitive neuroscience and neuropsychology. 2nd ed. Boston: Houghton Mifflin; 2004.Google Scholar
  126. 126.
    Middleton FA. Fundamental and clinical evidence for basal ganglia influences on cognition. In: Bedard M, Agid Y, Chouinard S, Fahn S, Korczyn A, editors. Mental and behavioral dysfunction in movement disorders. Totowa, New York: Humana Press; 2003. p. 13–34.Google Scholar
  127. 127.
    Middleton FA, Strick PL. A revised neuroanatomy of frontal–subcortical circuits. In: Lichter D, Cummings J, editors. Frontal–subcortical circuits in psychiatric and neurological disorders. New York: Guilford Press; 2001. p. 44–58.Google Scholar
  128. 128.
    Ashby FG, Ennis JM, Spiering BJ. A neurobiological theory of automaticity in perceptual categorization. Psychol Rev. 2007;114(3):632–56.PubMedGoogle Scholar
  129. 129.
    Seger CA. How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neurosci Biobehav Rev. 2008;32(2):265–78.PubMedGoogle Scholar
  130. 130.
    McNab F, Klingberg T. Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci. 2008;11(1):103–7.PubMedGoogle Scholar
  131. 131.
    Beste C, Willemssen R, Saft C, Falkenstein M. Error processing in normal aging and in basal ganglia disorders. Neuroscience. 2009;159(1):143–9.PubMedGoogle Scholar
  132. 132.
    Teichmann M, Gaura V, Demonet JF, Supiot F, Delliaux M, Verny C, et al. Language processing within the striatum: evidence from a PET correlation study in Huntington's disease. Brain. 2008;131(Pt 4):1046–56.PubMedGoogle Scholar
  133. 133.
    Thompson JC, Poliakoff E, Sollom AC, Howard E, Craufurd D, Snowden JS. Automaticity and attention in Huntington's disease: when two hands are not better than one. Neuropsychologia. 2010;48(1):171–8.PubMedGoogle Scholar
  134. 134.
    Frank MJ, Scheres A, Sherman SJ. Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1641–54.PubMedGoogle Scholar
  135. 135.
    Mataix-Cols D, van den Heuvel OA. Common and distinct neural correlates of obsessive–compulsive and related disorders. Psychiatr Clin North Am. 2006;29(2):391–410. viii.PubMedGoogle Scholar
  136. 136.
    Mataix-Cols D, Wooderson S, Lawrence N, Brammer MJ, Speckens A, Phillips ML. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive–compulsive disorder. Arch Gen Psychiatry. 2004;61(6):564–76.PubMedGoogle Scholar
  137. 137.
    van den Heuvel OA, Remijnse PL, Mataix-Cols D, Vrenken H, Groenewegen HJ, Uylings HB, et al. The major symptom dimensions of obsessive–compulsive disorder are mediated by partially distinct neural systems. Brain. 2009;132(Pt 4):853–68.PubMedGoogle Scholar
  138. 138.
    Heijtz RD, Kolb B, Forssberg H. Motor inhibitory role of dopamine D1 receptors: implications for ADHD. Physiol Behav. 2007;92(1–2):155–60.PubMedGoogle Scholar
  139. 139.
    Voeller KK. Attention-deficit hyperactivity disorder (ADHD). J Child Neurol. 2004;19(10):798–814.PubMedGoogle Scholar
  140. 140.
    Graybiel AM. The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem. 1998;70(1–2):119–36.PubMedGoogle Scholar
  141. 141.
    Seger CA. The basal ganglia in human learning. Neuroscientist. 2006;12(4):285.PubMedGoogle Scholar
  142. 142.
    Ashby FG, Ennis JM. The role of the basal ganglia in category learning. The psychology of learning and motivation: advances in research and theory. 2006. p. 1.Google Scholar
  143. 143.
    Packard MG, Knowlton BJ. Learning and memory functions of the basal ganglia. Annu Rev Neurosci. 2002;25:563–93.PubMedGoogle Scholar
  144. 144.
    Phillips AG, Vacca G, Ahn S. A top-down perspective on dopamine, motivation and memory. Pharmacol Biochem Behav. 2008;90(2):236–49.PubMedGoogle Scholar
  145. 145.
    Ashby FG, Turner BO, Horvitz JC. Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn Sci. 2010;14(5):208–215.Google Scholar
  146. 146.
    Dillon DG, Holmes AJ, Jahn AL, Bogdan R, Wald LL, Pizzagalli DA. Dissociation of neural regions associated with anticipatory versus consummatory phases of incentive processing. Psychophysiology. 2008;45(1):36.PubMedGoogle Scholar
  147. 147.
    Heekeren HR, Wartenburger I, Marschner A, Mell T, Villringer A, Reischies FM. Role of ventral striatum in reward-based decision making. NeuroReport. 2007;18(10):951–5.PubMedGoogle Scholar
  148. 148.
    Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, et al. The accumbens: beyond the core–shell dichotomy. J Neuropsychiatry Clin Neurosci. 1997;9(3):354–81.PubMedGoogle Scholar
  149. 149.
    Heimer L, Van Hoesen GW, Trimble M, Zahm DS. Anatomy of neuropsychiatry: the new anatomy of the basal forebrain and its implications for neuropsychiatric illness. San Diego, CA: Academic; 2008.Google Scholar
  150. 150.
    Robbins TW, Everett BJ. Motivation and reward. In: Squire LR, Bloom FE, Roberts JL, Spitzer NC, Zigmond NC, McConnell MK, editors. Fundamental neuroscience. 2nd ed. San Diego: Academic; 2003. p. 1109–26.Google Scholar
  151. 151.
    Sillitoe RV, Vogel MW. Desire, disease, and the origins of the dopaminergic system. Schizophr Bull. 2008;34(2):212–9.PubMedGoogle Scholar
  152. 152.
    Doll BB, Frank MJ. The basal ganglia in reward and decision making: computational models and empirical studies. In: Dreher J, Tremblay L, editors. Handbook of reward and decision making. New York: Academic Press; 2009. p. 399.Google Scholar
  153. 153.
    Yin HH, Ostlund SB, Balleine BW. Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci. 2008;28(8):1437.PubMedGoogle Scholar
  154. 154.
    Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. Psychol Rev. 2010;117(2):541.PubMedGoogle Scholar
  155. 155.
    Sil'kis IG. The role of dopamine-dependent negative feedback in the hippocampus–basal ganglia–thalamus–hippocampus loop in the extinction of responses. Neurosci Behav Physiol. 2008;38(4):399–405.PubMedGoogle Scholar
  156. 156.
    Frank MJ. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism. J Cogn Neurosci. 2005;17(1):51–72.PubMedGoogle Scholar
  157. 157.
    Cohen MX, Frank MJ. Neurocomputational models of basal ganglia function in learning, memory and choice. Behav Brain Res. 2009;199(1):141–56.PubMedGoogle Scholar
  158. 158.
    Frank MJ, Seeberger LC, O'Reilly RC. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science. 2004;306(5703):1940–3.PubMedGoogle Scholar
  159. 159.
    Cools R, Barker RA, Sahakian BJ, Robbins TW. L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia. 2003;41(11):1431–41.PubMedGoogle Scholar
  160. 160.
    Cools R, Barker RA, Sahakian BJ, Robbins TW. Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cereb Cortex. 2001;11(12):1136.PubMedGoogle Scholar
  161. 161.
    Frank MJ, Santamaria A, O'Reilly RC, Willcutt E. Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2007;32(7):1583–99.PubMedGoogle Scholar
  162. 162.
    Scheres A, Milham MP, Knutson B, Castellanos FX. Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61(5):720–4.PubMedGoogle Scholar
  163. 163.
    Delgado MR, Li J, Schiller D, Phelps EA. The role of the striatum in aversive learning and aversive prediction errors. Philos Trans R Soc B: Biol Sci. 2008;363(1511):3787.Google Scholar
  164. 164.
    Pizzagalli DA, Evins AE, Schetter EC, Frank MJ, Pajtas PE, Santesso DL, et al. Single dose of a dopamine agonist impairs reinforcement learning in humans: behavioral evidence from a laboratory-based measure of reward responsiveness. Psychopharmacology (Berl). 2008;196(2):221–32.Google Scholar
  165. 165.
    Levy F. Pharmacological and therapeutic directions in ADHD: specificity in the PFC. Behav Brain Funct. 2008;4:12.PubMedGoogle Scholar
  166. 166.
    Seger CA, Miller EK. Category learning in the brain. Annu Rev Neurosci. 2010;33(1).Google Scholar
  167. 167.
    Eysenck HJ. Speed of information processing, reaction time, and the theory of intelligence. In: Vernon P, editor. Speed of information processing and intelligence. Norwood, NJ: Ablex; 1987. p. 21–67.Google Scholar
  168. 168.
    Sheppard LD. Intelligence and speed of information-processing: a review of 50 years of research. Pers Individ Differ. 2008;44(3):533–49.Google Scholar
  169. 169.
    Vernon PA. Speed of information-processing and intelligence. NJ: Ablex Norwood; 1987.Google Scholar
  170. 170.
    Mandl RC, Schnack HG, Zwiers MP, van der Schaaf A, Kahn RS. Hulshoff Pol HE. Functional diffusion tensor imaging: measuring task-related fractional anisotropy changes in the human brain along white matter tracts. PLoS ONE. 2008;3(11):e3631.PubMedGoogle Scholar
  171. 171.
    Filley CM. White matter and behavioral neurology. Ann NY Acad Sci. 2005;1064:162–83.PubMedGoogle Scholar
  172. 172.
    van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. 2009;30(10):3127–41.PubMedGoogle Scholar
  173. 173.
    Bava S, Thayer R, Jacobus J, Ward M, Jernigan TL, Tapert SF. Longitudinal characterization of white matter maturation during adolescence. Brain Res. 2010;1327:38–46.Google Scholar
  174. 174.
    Bohland JW, Wu C, Barbas H, Bokil H, Bota M, Breiter HC, et al. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput Biol. 2009;5(3):e1000334.PubMedGoogle Scholar
  175. 175.
    Wahl M, Li YO, Ng J, LaHue SC, Cooper SR, Sherr EH, et al. Microstructural correlations of white matter tracts in the human brain. NeuroImage. 51(2):531–541.Google Scholar
  176. 176.
    Ullen F, Forsman L, Blom O, Karabanov A, Madison G. Intelligence and variability in a simple timing task share neural substrates in the prefrontal white matter. J Neurosci. 2008;28(16):4238–43.PubMedGoogle Scholar
  177. 177.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedGoogle Scholar
  178. 178.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedGoogle Scholar
  179. 179.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.PubMedGoogle Scholar
  180. 180.
    Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8.PubMedGoogle Scholar
  181. 181.
    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.PubMedGoogle Scholar
  182. 182.
    Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.PubMedGoogle Scholar
  183. 183.
    Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4(12):1–8.Google Scholar
  184. 184.
    Blumenfeld H. Neuroanatomy through clinical cases. Sinauer Associates; 2002.Google Scholar
  185. 185.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.PubMedGoogle Scholar
  186. 186.
    Azizi A. ... and the olive said to the cerebellum: organization and functional significance of the olivo-cerebellar system. The Neuroscientist. 2007;13(6):616.Google Scholar
  187. 187.
    Houk JC, Mugnaini E. Cerebellum. In: Squire L, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ, editors. Fundamental neuroscience. San Diego: Academic; 2003. p. 841–72.Google Scholar
  188. 188.
    Glickstein M. What does the cerebellum really do? Curr Biol. 2007;17(19):R824–7.PubMedGoogle Scholar
  189. 189.
    Granziera C, Schmahmann J, Hadjikhani N, Meyer H, Meuli R, Wedeen V, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS ONE. 2009;4(4):e5101.PubMedGoogle Scholar
  190. 190.
    Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2009. doi: 10.1016/j.cortex.2009.
  191. 191.
    Hu D, Shen H, Zhou Z. Functional asymmetry in the cerebellum: a brief review. Cerebellum. 2008;7(3):304–313.Google Scholar
  192. 192.
    Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–28.Google Scholar
  193. 193.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–844.Google Scholar
  194. 194.
    Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–1343.Google Scholar
  195. 195.
    Murdoch BE. The cerebellum and language: historical perspective and review. Cortex. 2009;46(7):858–868.Google Scholar
  196. 196.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.PubMedGoogle Scholar
  197. 197.
    Middleton FA, Strick PL. Cerebellar output channels. Int Rev Neurobiol. 1997;41:61–82.PubMedGoogle Scholar
  198. 198.
    Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66.PubMedGoogle Scholar
  199. 199.
    Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22.PubMedGoogle Scholar
  200. 200.
    Baillieux H, Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–773.Google Scholar
  201. 201.
    Justus TC, Ivry RB. The cognitive neuropsychology of the cerebellum. Int Rev Psychiatry. 2001;13(4):276–82.Google Scholar
  202. 202.
    Hautzel H, Mottaghy FM, Specht K, Muller HW, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage. 2009;47(4):2073–2082.Google Scholar
  203. 203.
    Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(2):306–20.PubMedGoogle Scholar
  204. 204.
    Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF, et al. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164(4):647–55.PubMedGoogle Scholar
  205. 205.
    Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):1940–3.PubMedGoogle Scholar
  206. 206.
    Ghajar J, Ivry RB. The predictive brain state: asynchrony in disorders of attention? Neuroscientist. 2009;15(3):232–42.PubMedGoogle Scholar
  207. 207.
    Ben-Yehudah G, Guediche S, Fiez JA. Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum. 2007;6(3):193–201.PubMedGoogle Scholar
  208. 208.
    Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64(2):81–88.Google Scholar
  209. 209.
    Daum I, Ackermann H, Schugens MM, Reimold C, Dichgans J, Birbaumer N. The cerebellum and cognitive functions in humans. Behav Neurosci. 1993;107(3):411–9.PubMedGoogle Scholar
  210. 210.
    Facundo M, Villamil AR, Ameriso S, Roca M, Torralva T. ‘Real life’ executive deficits in patients with focal vascular lesions affecting the cerebellum. J Neurol Sci. 2009;283(1):95–8.Google Scholar
  211. 211.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedGoogle Scholar
  212. 212.
    Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMedGoogle Scholar
  213. 213.
    Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Physiol. 2005;35(8):773–9.PubMedGoogle Scholar
  214. 214.
    Kalashnikova LA. The role of the cerebellum in the organization of higher mental functions. Zh Nevrol Psikhiatr Im S S Korsakova. 2001;101(4):55–60.PubMedGoogle Scholar
  215. 215.
    Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50.PubMedGoogle Scholar
  216. 216.
    Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.PubMedGoogle Scholar
  217. 217.
    van Schouwenburg M, Aarts E, Cools R. Dopaminergic modulation of cognitive control: distinct roles for the prefrontal cortex and the basal ganglia. Curr Pharm Des. 2010;16(18):2026–32.PubMedGoogle Scholar
  218. 218.
    Wymbs NF, Grafton ST. Neural substrates of practice structure that support future off-line learning. J Neurophysiol. 2009;102(4):2462–76.PubMedGoogle Scholar
  219. 219.
    Seidler RD. Neural correlates of motor learning, transfer of learning, and learning to learn. Exerc Sport Sci Rev. 2010;38(1).Google Scholar
  220. 220.
    Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMedGoogle Scholar
  221. 221.
    Vandervert LR. The appearance of the child prodigy 10,000 years ago: an evolutionary and developmental explanation. J Mind Behav J Mind Behav. 2009;30(1–2):15–32.Google Scholar
  222. 222.
    Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9(6):718–27.PubMedGoogle Scholar
  223. 223.
    Kawato M, Gomi H. A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern. 1992;68(2):95–103.PubMedGoogle Scholar
  224. 224.
    Vandervert L. How working memory and cognitive modeling functions of the cerebellum contribute to discoveries in mathematics. New Ideas Psychol. 2003;21(2):159–75.Google Scholar
  225. 225.
    Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De LM, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.PubMedGoogle Scholar
  226. 226.
    Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum. 2009;8(3):399–402.PubMedGoogle Scholar
  227. 227.
    Park IS, Lee KJ, Han JW, Lee NJ, Lee WT, Park KA, et al. Experience-dependent plasticity of cerebellar vermis in basketball players. Cerebellum (London, England). 2009;8(3):334–9.Google Scholar
  228. 228.
    Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA. 2002;99(2):1017–22.PubMedGoogle Scholar
  229. 229.
    Vandervert LR, Schimpf PH, Liu H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creat Res J. 2007;19(1):1–18.Google Scholar
  230. 230.
    Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA. 2003;100(9):5461–6.PubMedGoogle Scholar
  231. 231.
    Tamada T, Miyauchi S, Imamizu H, Yoshioka T, Kawato M. Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning. NeuroReport. 1999;10(2):325–31.PubMedGoogle Scholar
  232. 232.
    Hayter AL, Langdon DW, Ramnani N. Cerebellar contributions to working memory. Neuroimage. 2007;36(3):943–54.PubMedGoogle Scholar
  233. 233.
    Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. Neuroimage. 2008;43(2):388–98.PubMedGoogle Scholar
  234. 234.
    Carmona JE, Holland AK, Harrison DW. Extending the functional cerebral systems theory of emotion to the vestibular modality: a systematic and integrative approach. Psychol Bull. 2009;135(2):286–302.PubMedGoogle Scholar
  235. 235.
    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedGoogle Scholar
  236. 236.
    Hoshi E, Tremblay L, Fθger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.PubMedGoogle Scholar
  237. 237.
    Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science. 2007;318(5854):1309–12.PubMedGoogle Scholar
  238. 238.
    Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci. 2010;107(18):8452–8456.Google Scholar
  239. 239.
    Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.PubMedGoogle Scholar
  240. 240.
    Nicolson RI, Fawcett AJ. Procedural learning difficulties: reuniting the developmental disorders? Trends Neurosci. 2007;30(4):135–41.PubMedGoogle Scholar
  241. 241.
    Vandervert LR. Working memory, the cognitive functions of the cerebellum and the child prodigy. In: Shavinina L, editor. The international handbook on giftedness. Netherlands: Springer; 2009. p. 295–316.Google Scholar
  242. 242.
    Vandervert LR. From idiots savants to Albert Einstein: a brain-algorithmic explanation of savant and everyday performance. New Ideas Psychology. 1996;14(1):81–92.Google Scholar
  243. 243.
    Drake JE, Winner E. Precocious realists: perceptual and cognitive characteristics associated with drawing talent in non-autistic children. Philos Trans R Soc Lond B Biol Sci. 2009;364(1522):1449–58.PubMedGoogle Scholar
  244. 244.
    Hoard MK, Geary DC, Byrd-Craven J, Nugent L. Mathematical cognition in intellectually precocious first graders. Dev Neuropsychol. 2008;33(3):251–76.PubMedGoogle Scholar
  245. 245.
    Swanson HL. Cognitive processes that underlie mathematical precociousness in young children. J Exp Child Psychol. 2006;93(3):239–64.PubMedGoogle Scholar
  246. 246.
    Thompson LA, Oehlert J. The etiology of giftedness. Learn Individ Differ. 2009;20(4):298–307.Google Scholar
  247. 247.
    Bartels M, Rietveld MJH, Van Baal GCM, Boomsma DI. Genetic and environmental influences on the development of intelligence. Behav Genet. 2002;32(4):237–49.PubMedGoogle Scholar
  248. 248.
    Goldsmith HH, Pollak SD, Davidson RJ. Developmental neuroscience perspectives on emotion regulation. Child Dev Perspect. 2008;2(3):132–40.PubMedGoogle Scholar
  249. 249.
    Goldsmith HH, Lemery KS, Aksan N, Buss KA. Temperamental substrates of personality development. In: Molfese V, Molfese D, editors. Temperamental substrates of personality development. Mahwah, NJ: Lawrence Erlbaum; 2000. p. 1–32.Google Scholar
  250. 250.
    Vandervert LR. The appearance of the child prodigy 10,000 years ago: an evolutionary and developmental explanation. J Mind Behav J Mind Behav. 2009;30(1–2):15–32.Google Scholar
  251. 251.
    Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, et al. Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA. 2007;104(33):13507–12.PubMedGoogle Scholar
  252. 252.
    Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, et al. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009;5(5):e1000381.PubMedGoogle Scholar
  253. 253.
    Tsujimoto S, Kuwajima M, Sawaguchi T. Developmental fractionation of working memory and response inhibition during childhood. Exp Psychol. 2007;54(1):30–7.PubMedGoogle Scholar
  254. 254.
    Tsujimoto S, Yamamoto T, Kawaguchi H, Koizumi H, Sawaguchi T. Prefrontal cortical activation associated with working memory in adults and preschool children: an event-related optical topography study. Cereb Cortex. 2004;14(7):703–12.PubMedGoogle Scholar
  255. 255.
    Marsh R, Maia TV, Peterson BS. Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am J Psychiatry. 2009;166(6):664–74.PubMedGoogle Scholar
  256. 256.
    Marsh R, Gerber AJ, Peterson BS. Neuroimaging studies of normal brain development and their relevance for understanding childhood neuropsychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2008;47(11):1233–51.PubMedGoogle Scholar
  257. 257.
    Webb JT, Amend ER, Webb NE, Goerss J, Beljan P, Olenchak R. Misdiagnosis and dual diagnoses of gifted children and adults: ADHD, bipolar, OCD, Asperger's, depression, and other disorders. Scottsdale, AZ: Great Potential; 2005.Google Scholar
  258. 258.
    Kinsbourne M. Consciousness in action: antecedents and origins. Mind Lang. 2000;15:545–55.Google Scholar
  259. 259.
    Kinsbourne M. Development of attention and metacognition. In: Rapin I, Segalowitz S, editors. Handbook of neuropsychology. Amsterdam: Elsevier; 1993. p. 261–78.Google Scholar
  260. 260.
    Krigolson OE, Pierce LJ, Holroyd CB, Tanaka JW. Learning to become an expert: reinforcement learning and the acquisition of perceptual expertise. J Cogn Neurosci. 2009;21(9):1834–41.PubMedGoogle Scholar
  261. 261.
    Cummings JL. Anatomic and behavioral aspects of frontal–subcortical circuits. Ann NY Acad Sci. 1995;769(1):1–13.PubMedGoogle Scholar
  262. 262.
    Cummings JL, Mega M. Neuropsychiatry and behavioral neuroscience. New York: Oxford University Press; 2003.Google Scholar
  263. 263.
    Segawa M. Development of the nigrostriatal dopamine neuron and the pathways in the basal ganglia. Brain Dev. 2000;22 Suppl 1:S1–4.PubMedGoogle Scholar
  264. 264.
    Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006;129(Pt 2):290–2.PubMedGoogle Scholar
  265. 265.
    Kringelbach ML, Berridge KC. Pleasures of the brain. New York: Oxford University Press; 2009.Google Scholar
  266. 266.
    Holstege G, Georgiadis JR, Paans AMJ, Meiners LC, van der Graaf FHCE, Reinders AATS. Brain activation during human male ejaculation. J Neurosci. 2003;23(27):9185–93.PubMedGoogle Scholar
  267. 267.
    Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5(2):95–110.PubMedGoogle Scholar
  268. 268.
    Mishkin M, Appenzeller T. The anatomy of memory. Sci Am. 1987;256(6):80–9.PubMedGoogle Scholar
  269. 269.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.PubMedGoogle Scholar
  270. 270.
    Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguist. 2000;13(2–3):189–214.Google Scholar
  271. 271.
    Wang GJ, Yang J, Volkow ND, Telang F, Ma Y, Zhu W, et al. Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proc Natl Acad Sci USA. 2006;103(42):15641–5.PubMedGoogle Scholar
  272. 272.
    Caston J, Chianale C, Delhaye-Bouchaud N, Mariani J. Role of the cerebellum in exploration behavior. Brain Res. 1998;808(2):232–7.PubMedGoogle Scholar
  273. 273.
    Zastrow A, Kaiser S, Stippich C, Walther S, Herzog W, Tchanturia K, et al. Neural correlates of impaired cognitive–behavioral flexibility in anorexia nervosa. Am J Psychiatry. 2009;166(5):608–16.PubMedGoogle Scholar
  274. 274.
    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedGoogle Scholar
  275. 275.
    Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMedGoogle Scholar
  276. 276.
    Anderson CM, Maas LC, Frederick B, Bendor JT, Spencer TJ, Livni E, et al. Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology. 2006;31(6):1318–26.PubMedGoogle Scholar
  277. 277.
    Georgiadis JR, Kortekaas R. The sweetest taboo: functional neurobiology of human sexuality in relation to pleasure. In: Kringelbach L, Berridge K, editors. Pleasures of the Brain. New York: Oxford University Press. 2010.Google Scholar
  278. 278.
    Lobb CJ, Wilson CJ, Paladini CA. A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol. 2010.Google Scholar
  279. 279.
    Bari A, Theobald DE, Caprioli D, Mar AC, Aidoo-Micah A, Dalley JW, et al. Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology. 2010.Google Scholar
  280. 280.
    Pribram KH. The work in working memory: implications for development. Development of the prefrontal cortex: evolution, neurobiology, and behavior. 1997. p. 359–78.Google Scholar
  281. 281.
    Pennington BF. Dimensions of executive functions in normal and abnormal development. Development of the prefrontal cortex: evolution, neurobiology, and behavior. 1997. p. 265–81.Google Scholar
  282. 282.
    Ericsson KA, Krampe RT, Tesch-Romer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363–406.Google Scholar
  283. 283.
    Kiesel A, Kunde W, Pohl C, Berner MP, Hoffmann J. Playing chess unconsciously. J Exp Psychol Learn Mem Cogn. 2009;35(1):292–8.PubMedGoogle Scholar
  284. 284.
    Campitelli G, Gobet F. The role of practice in chess: a longitudinal study. Learn Individ Differ. 2008;18(4):446–58.Google Scholar
  285. 285.
    Johnston MV. Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev. 2009;15(2):94–101.PubMedGoogle Scholar
  286. 286.
    Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051–61.PubMedGoogle Scholar
  287. 287.
    Haruno M, Wolpert DM, Kawato M. Multiple paired forward-inverse models for human motor learning and control. In: Kearns M, Solla S, Cohn D, editors. Advances in neural information processing systems. Cambridge, MA: MIT Press; 1999. p. 31–7.Google Scholar
  288. 288.
    Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philos Trans R Soc B: Biol Sci. 2003;358(1431):593.Google Scholar
  289. 289.
    Hodgkinson GP, Langan-Fox J, Sadler-Smith E. Intuition: a fundamental bridging construct in the behavioural sciences. Br J Psychol. 2008;99(1):1–27.PubMedGoogle Scholar
  290. 290.
    Shavinina LV, Seeratan KL. Extracognitive phenomena in the intellectual functioning of gifted, creative and talented individuals. In: Shavinina L, Ferrari M, editors. Beyond knowledge: extracognitive aspects of developing high ability. Mahwah, New Jersey: Lawrence Erlbaum Associates; 2004. p. 73–102.Google Scholar
  291. 291.
    Vandervert L. The neurophysiological basis of innovation. In: Shavinina L, editor. The international handbook on innovation. Elsevier Science; 2003. p. 17–30.Google Scholar
  292. 292.
    Ashby FG, O'Brien JB. The effects of positive versus negative feedback on information-integration category learning. Percept Psychophys. 2007;69(6):865–78.PubMedGoogle Scholar
  293. 293.
    Ashby FG, Maddox WT. Complex decision rules in categorization: contrasting novice and experienced performance. J Exp Psychol Hum Percept Perform. 1992;18(1):50–71.Google Scholar
  294. 294.
    Ashby FG, Alfonso-Reese LA, Turken AU, Waldron EM. A neuropsychological theory of multiple systems in category learning. Psychol Rev. 1998;105(3):442–81.PubMedGoogle Scholar
  295. 295.
    Ashby FG, Maddox WT. Human category learning. Annu Rev Psychol. 2005;56:149–78.PubMedGoogle Scholar
  296. 296.
    De la Maza M. Rapid chess improvement: a study plan for adult players. London: Everyman Chess; 2002.Google Scholar
  297. 297.
    Treffert D, Christensen D. Inside the mind of a savant. Sci Am. 2009;293:108–113.Google Scholar
  298. 298.
    Treffert DA. The savant syndrome: an extraordinary condition. A synopsis: past, present, future. Philos Trans R Soc B: Biol Sci. 2009;364(1522):1351.Google Scholar
  299. 299.
    Treffert DA. The savant syndrome in autistic disorder. In: Casanova M, editor. Recent developments in autism research. New York: Nova Science; 2005. p. 27–55.Google Scholar
  300. 300.
    Rubenstein JLR. Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol. 2010;23(2):118.PubMedGoogle Scholar
  301. 301.
    Sivaswamy L, Kumar A, Rajan D, Behen M, Muzik O, Chugani D, et al. A diffusion tensor imaging study of the cerebellar pathways in children with autism spectrum disorder. J Child Neurol. 2010. doi: 10.1177/0883073809358765.
  302. 302.
    Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23(2–3):183–7.PubMedGoogle Scholar
  303. 303.
    Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45.PubMedGoogle Scholar
  304. 304.
    Bunge SA, Wallis JD. Neuroscience of rule-guided behavior. Oxford, New York: Oxford University Press; 2008.Google Scholar
  305. 305.
    Grahn JA, Rowe JB. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J Neurosci. 2009;29(23):7540.PubMedGoogle Scholar
  306. 306.
    Bengtsson SL, Ullen F. Dissociation between melodic and rhythmic processing during piano performance from musical scores. Neuroimage. 2006;30(1):272–84.PubMedGoogle Scholar
  307. 307.
    Karabanov A, Blom O, Forsman L, Ullen F. The dorsal auditory pathway is involved in performance of both visual and auditory rhythms. Neuroimage. 2009;44(2):480–8.PubMedGoogle Scholar
  308. 308.
    Young RL, Nettelbeck T. The abilities of a musical savant and his family. J Autism Dev Disord. 1995;25(3):231–48.PubMedGoogle Scholar
  309. 309.
    Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory–motor interactions in music perception and production. Nat Rev Neurosci. 2007;8(7):547–58.PubMedGoogle Scholar
  310. 310.
    Ferretti V, Roullet P, Sargolini F, Rinaldi A, Perri V, Del Fabbro M et al. Ventral striatal plasticity and spatial memory. Proc Natl Acad Sci. 2010;107(17):7945–7950.Google Scholar
  311. 311.
    Zamarian L, Lopez-Rolon A, Delazer M. Neuropsychological case studies on arithmetic processing. In: Berch DB, Mazzocco, editors. Why is math so hard for some children?: the nature and origins of mathematical learning difficulties and disabilities. Baltimore, MD: Brookes Publishing; 2007. p. 245.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Leonard F. Koziol
    • 1
  • Deborah Ely Budding
    • 2
  • Dana Chidekel
    • 3
  1. 1.ChicagoUSA
  2. 2.Manhattan BeachUSA
  3. 3.TarzanaUSA

Personalised recommendations