The Cerebellum

, Volume 9, Issue 3, pp 398–404 | Cite as

Interhemispheric Asymmetry of Corticomotor Excitability After Chronic Cerebellar Infarcts

  • Suzete Nascimento Farias da GuardaEmail author
  • Leonardo G. Cohen
  • Marco da Cunha Pinho
  • Fábio Iuji Yamamoto
  • Paulo Eurípedes Marchiori
  • Milberto Scaff
  • Adriana Bastos Conforto


Early after stroke, there is loss of intracortical facilitation (ICF) and increase in short-interval intracortical inhibition (SICI) in the primary motor cortex (M1) contralateral to a cerebellar infarct. Our goal was to investigate intracortical M1 function in the chronic stage following cerebellar infarcts (>4 months). We measured resting motor threshold (rMT), SICI, ICF, and ratios between motor-evoked potential amplitudes (MEP) and supramaximal M response amplitudes (MEP/M; %), after transcranial magnetic stimulation was applied to the M1 contralateral (M1contralesional) and ipsilateral (M1ipsilesional) to the cerebellar infarct in patients and to both M1s of healthy age-matched volunteers. SICI was decreased in M1contralesional compared to M1ipsilesional in the patient group in the absence of side-to-side differences in controls. There were no significant interhemispheric or between-group differences in rMT, ICF, or MEP/M (%). Our results document disinhibition of M1contralesional in the chronic phase after cerebellar stroke.


Transcranial magnetic stimulation Paired pulse Cerebellar disease Stroke 



Dr. Suzete N. Farias received a research scholarship from Fundação Faculdade de Medicina, Clinics Hospital/São Paulo University. We thank Michael Dimyan for helpful comments and suggestions.

Conflict of Interest

The authors have no conflicts of interest.


  1. 1.
    Liepert J, Kucinski T, Tüscher O, Pawlas F, Bäumer T, Weiller C. Motor cortex excitability after cerebellar infarction. Stroke. 2004;35:2484–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84:585–90.PubMedGoogle Scholar
  3. 3.
    Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.CrossRefPubMedGoogle Scholar
  4. 4.
    Wiesendanger M, Serrien DJ. Toward a physiological understanding of human dexterity. News Physiol Sci. 2001;16:228–33.PubMedGoogle Scholar
  5. 5.
    Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185:359–81.CrossRefPubMedGoogle Scholar
  6. 6.
    Saywell N, Taylor D. The role of the cerebellum in procedural learning—are there implications for physiotherapists’ clinical practice? Physiother Theory Pract. 2008;24(5):321–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review, Cortex 2009, doi: 10.1016/j.cortex.2009.06.009
  8. 8.
    Mandolesi L, Foti F, Cutuli D, Laricchiuta D, Gelfo F, De Bartolo P, et al. Features of sequential learning in hemicerebellectomized rats. J Neurosci Res. 2010;88:478–86.PubMedGoogle Scholar
  9. 9.
    Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticortical inhibition in human motor cortex. J Physiol(Lond). 1993;471:501–19.Google Scholar
  10. 10.
    Di Lazzaro V, Pilato F, Oliviero A, Dileone M, Saturno E, Mazzone P, et al. Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans. J Neurophysiol. 2006;96:1765–71.CrossRefPubMedGoogle Scholar
  11. 11.
    Cicinelli P, Traversa R, Oliveri M, Palmieri MG, Filippi MM, Pasqualetti P, et al. Intracortical excitatory and inhibitory phenomena to paired transcranial magnetic stimulation in healthy human subjects: differences between the right and left hemisphere. Neurosci Lett. 2000;288:171–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Cahn SD, Herzog AG, Pascual-Leone A. Paired-pulse transcranial magnetic stimulation: effects of hemispheric laterality, gender, and handedness in normal controls. J Clin Neurophysiol. 2003;20:371–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Brott T, Adams Jr HP, Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20:864–70.PubMedGoogle Scholar
  14. 14.
    Jebsen R, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50:311–9.PubMedGoogle Scholar
  15. 15.
    Schmitz-Hübsch T, Tezenas du Montcel S, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia. Development of a new clinical scale. Neurology. 2006;66:1717–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Hanajima R, Wang R, Nakatani-Enomoto S, et al. Comparison of different methods for estimating motor threshold with transcranial magnetic stimulation. Clin Neurophysiol. 2007;118:2120–2.CrossRefPubMedGoogle Scholar
  17. 17.
    Weber M, Eisen AA. Magnetic stimulation of the central and peripheral nervous systems. Muscle Nerve. 2002;25:160–75.CrossRefPubMedGoogle Scholar
  18. 18.
    Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol. 2008;586:325–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Kaelin-Lang A, Cohen LG. Enhancing the quality of studies using transcranial magnetic and electrical stimulation with a new computer-controlled system. J Neurosci Methods. 2000;102:81–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Evarts EV, Thach WT. Motor mechanisms of the CNS: cerebrocerebellar interrelations. Annu Rev Physiol. 1969;31:451–98.CrossRefPubMedGoogle Scholar
  21. 21.
    Taib NOB, Manto M. Effects of trains of high-frequency stimulation of the premotor/supplementary motor area on conditioned corticomotor responses in hemicerebellectomized rats. Exp Neurol. 2008;212:157–65.CrossRefGoogle Scholar
  22. 22.
    Taib NOB, Manto M, Massimo P, Brotchi J. Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat. J Physiol. 2005;567(1):293–300.CrossRefPubMedGoogle Scholar
  23. 23.
    Luft AR, Manto MU, Taib NOB. Modulation of motor cortex excitability by sustained peripheral stimulation: the interaction between the motor cortex and the cerebellum. Cerebellum. 2005;4:90–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Taib NOB, Manto M, Laute MA, Brotchi J. The cerebellum modulates rodent cortical motor output after repetitive somatosensory stimulation. Neurosurgery. 2005;56:811–20.CrossRefGoogle Scholar
  25. 25.
    Terao Y, Ugawa Y. Basic mechanisms of TMS. J Clin Neurophysiol. 2002;19(4):322–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Sönmezoğlu K, Sperling B, Henriksen T, Tfelt-Hansen P, Lassen NA. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions: crossed cerebral diaschisis. Acta Neurol Scand. 1993;87:275–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Camus M, Ragert P, Vandermeeren Y, Cohen LG. Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clin Neurophysiol. 2009;120:1859–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Edwards DJ, Krebs HI, Rykman A, Zipse J, Thickbroom GW, Mastaglia FL, et al. Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restor Neurol Neurosci. 2009;27(3):199–207.PubMedGoogle Scholar
  29. 29.
    Celnik P, Hummel F, Harris-Love M, Wolk R, Cohen LG. Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Arch Phys Med Rehabil. 2007;88:1369–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol. 2006;117:1641–59.CrossRefPubMedGoogle Scholar
  31. 31.
    Quartarone A, Rizzo V, Terranova C, Morgante F, Schneider S, Ibrahim N. Abnormal sensorimotor plasticity in organic but not in psychogenic dystonia. Brain. 2009;132:2871–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Ziemann U, Lõnnecker S, Steinhoff BJ, Paulus W. Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol. 1996;40:367–78.CrossRefPubMedGoogle Scholar
  33. 33.
    Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol. 2008;21(6):628–33.CrossRefPubMedGoogle Scholar
  34. 34.
    Krakauer JW, Shadmehr R. Consolidation of motor memory. Trends Neurosci. 2006;29(1):58–64.CrossRefPubMedGoogle Scholar
  35. 35.
    Tamburin S, Fiaschia A, Andreolib A, Marania S, Manganottia P, Zanette G. Stimulus-response properties of motor system in patients with cerebellar ataxia. Clin Neurophysiol. 2004;115:348–55.CrossRefPubMedGoogle Scholar
  36. 36.
    Ziemann U, Corwell B, Cohen LG. Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J Neurosci. 1998;18:1115–23.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Suzete Nascimento Farias da Guarda
    • 1
    • 2
    • 6
    Email author
  • Leonardo G. Cohen
    • 3
  • Marco da Cunha Pinho
    • 4
  • Fábio Iuji Yamamoto
    • 1
  • Paulo Eurípedes Marchiori
    • 1
  • Milberto Scaff
    • 1
  • Adriana Bastos Conforto
    • 1
    • 2
    • 5
  1. 1.Department of NeurologyClinics Hospital/São Paulo UniversitySão PauloBrazil
  2. 2.Neurostimulation LaboratoryClinics Hospital/São Paulo UniversitySão PauloBrazil
  3. 3.Human Cortical Physiology and Stroke Neurorehabilitation SectionNINDS, NIHBethesdaUSA
  4. 4.Department of RadiologyClinics Hospital/São Paulo UniversitySão PauloBrazil
  5. 5.Instituto Israelita de Ensino e Pesquisa Albert EinsteinSão PauloBrazil
  6. 6.BahiaBrazil

Personalised recommendations