The Cerebellum

, Volume 11, Issue 1, pp 71–77 | Cite as

Glutamate-Receptor-Like Molecule GluRδ2 Involved in Synapse Formation at Parallel Fiber-Purkinje Neuron Synapses



Glutamate-receptor-like molecule δ2 (GluRδ2, GluD2) has been classified as an ionotropic glutamate receptor subunit. It is selectively expressed on the postsynaptic membrane at parallel fiber-Purkinje neuron synapses in the cerebellum. Mutant mice deficient in GluRδ2 show impaired synaptic plasticity, the decrease in the number of parallel fiber-Purkinje neuron synapses, multiple innervation of climbing fibers on a Purkinje neuron, and defects in motor control and learning. Thus, GluRδ2 plays crucial roles in the cerebellar function. Recent studies on GluRδ2 have shown that it has synaptogenic activity. GluRδ2 expressed in a non-neuronal cell induces presynaptic differentiation of granule neurons in a co-culture preparation. This synaptogenic activity depends on an extracellular N-terminal leucine/isoleucine/valine binding protein-like domain of GluRδ2. GluRδ2 plays critical roles in formation, maturation, and/or maintenance of granule neuron–Purkinje neuron synapses.


Glutamate receptor Cerebellum Purkinje neuron Granule neuron Synapse formation Presynaptic differentiation 


  1. 1.
    Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol. 1997;37:205–37.CrossRefGoogle Scholar
  3. 3.
    Sobolevski AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 2009;462:745–56.CrossRefGoogle Scholar
  4. 4.
    Takayama C, Nakagawa S, Watanabe M, Mishina M, Inoue Y. Light- and electron-microscopic localization of the glutamate receptor channel δ2 subunit in the mouse Purkinje cell. Neurosci Lett. 1995;188:89–92.PubMedCrossRefGoogle Scholar
  5. 5.
    Hirano T, Kasono K, Araki K, Shinozuka K, Mishina M. Involvement of the glutamate receptor δ2 subunit in the long-term depression of glutamate responsiveness in cultured rat Purkinje cells. Neurosci Lett. 1994;182:172–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR δ2 mutant mice. Cell. 1995;81:245–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Funabiki K, Mishina M, Hirano T. Retarded vestibular compensation in mutant mice deficient in δ2 glutamate receptor subunit. NeuroReport. 1995;7:189–92.PubMedGoogle Scholar
  8. 8.
    Kishimoto Y, Kawahara S, Suzuki M, Mori H, Mishina M, Kirino Y. Classical eyeblink conditioning in glutamate receptor subunit δ2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. Eur J Neurosci. 2001;13:1249–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Katoh A, Yoshida T, Himeshima Y, Mishina M, Hirano T. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor δ2 subunit or Purkinje cells. Eur J Neurosci. 2005;21:1315–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Yoshida T, Katoh A, Ohtsuki G, Mishina M, Hirano T. Oscillating Purkinje neuron activity causing involuntary eye movement in a mutant mouse deficient in the glutamate receptor δ2 subunit. J Neurosci. 2004;24:2440–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Yawata S, Tsuchida H, Kengaku M, Hirano T. Membrane-proximal region of GluRδ2 is critical for LTD and interaction with PICK1 in a cerebellar Purkinje neuron. J Neurosci. 2006;26:3626–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Kohda K, Kakegawa W, Matsuda S, Nakagami R, Kakiya N, Yuzaki M. The extreme C-terminus of GluRδ2 is essential for induction of long-term depression in cerebellar slices. Eur J Neurosci. 2007;25:1357–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Uemura T, Kakizawa S, Yamasaki M, Sakimura K, Watanabe M, Iino M, et al. Regulation of long-term depression and climbing fiber territory by glutamate receptor δ2 at parallel fiber synapses through its C-terminal domain in cerebellar Purkinje cells. J Neurosci. 2007;27:12096–108.PubMedCrossRefGoogle Scholar
  14. 14.
    Uemura T, Mishina M. The amino-terminal domain of glutamate receptor δ2 triggers presynaptic differentiation. Biochem Biophys Res Commun. 2008;377:1315–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuroyanagi T, Yokoyama M, Hirano T. Postsynaptic glutamate receptor δ family contributes to presynaptic terminal differentiation and establishment of synaptic transmission. Proc Natl Acad Sci U S A. 2009;106:4912–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Kakegawa W, Miyazaki T, Kohda K, Matsuda K, Emi K, Motohashi J, et al. The N-terminal domain of GluD2 (GluRδ2) recruits presynaptic terminals and regulates synaptogenesis in the cerebellum in vivo. J Neurosci. 2009;29:5738–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Mandolesi G, Autuori E, Cesa R, Premoselli F, Cesare P, Strata P. GluRδ2 expression in the mature cerebellum of hotfoot mice promotes parallel fiber synaptogenesis and axonal competition. PLoS One. 2009;4:e5243.PubMedCrossRefGoogle Scholar
  18. 18.
    Torashima T, Iizuka A, Horiuchi H, Mitsumura K, Yamasaki M, Koyama C, et al. Rescue of abnormal phenotypes in δ2 glutamate receptor-deficient mice by the extracellular N-terminal and intracellular C-terminal domains of the δ2 glutamate receptor. Eur J Neurosci. 2009;30:355–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Hirano T. Cerebellar regulation mechanisms learned from studies on GluRδ2, a unique glutamate-receptor-related molecule specifically expressed at parallel fiber-Purkinje cell synapses. Mol Neurobiol. 2006;33:1–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Mandolesi G, Cesa R, Autuori E, Strata P. An orphan ionotropic glutamate receptor: the δ2 subunit. Neurosci. 2009;158:67–77.CrossRefGoogle Scholar
  21. 21.
    Yuzaki M. New (but old) molecules regulating synaptic integrity and plasticity: Cbln1 and the δ2 glutamate receptor. Neurosci. 2009;162:633–43.CrossRefGoogle Scholar
  22. 22.
    Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M. Selective expression of the glutamate receptor channel δ2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun. 1993;197:1267–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Lomeli H, Sprengel R, Laurie DJ, Kohr G, Herb A, Seeburg P, et al. The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett. 1993;315:318–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Hirai H, Matsuda S. Interaction of the C-terminal domain of δ glutamate receptor with spectrin in the dendritic spines of cultured Purkinje cells. Neurosci Res. 1999;34:281–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Roche KW, Ly CD, Petralia RS, Wang YX, McGee AW, Bredt DS, et al. Postsynaptic density-93 interacts with the δ2 glutamate receptor subunit at parallel fiber synapses. J Neurosci. 1999;19:3926–34.PubMedGoogle Scholar
  26. 26.
    Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor δ2 and ε subunits. J Biol Chem. 2000;275:16167–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Miyagi Y, Yamashita T, Fukaya M, Sonoda T, Okuno T, Yamada K, et al. Delphilin: a novel PDZ and forming homology domain-containing protein that synaptically colocalizes and interacts with glutamate receptor δ2 subunit. J Neurosci. 2002;22:803–14.PubMedGoogle Scholar
  28. 28.
    Yue Z, Horton A, Bravin M, Dejager PL, Selimi F, Heinz N. A novel protein complex linking the δ2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron. 2002;35:921–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Uemura T, Mori H, Mishina M. Direct interaction of GluRδ2 with Shank scaffold proteins in cerebellar Purkinje cells. Mol Cell Neurosci. 2004;26:330–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Yap CC, Murate M, Kishigami S, Muto Y, Kishida H, Hashikawa T, et al. Adaptor protein complex-4 (AP-4) is expressed in the central nervous system neurons and interacts with glutamate receptor δ2. Mol Cell Neurosci. 2003;24:283–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Ly CD, Roche KW, Lee H, Wenthold RJ. Identification of rat EMAP, a δ-glutamate receptor binding protein. Biochem Biophys Res Commun. 2002;291:85–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Yap CC, Muto Y, Kishida H, Hashikawa T, Yano R. PKC regulates the δ2 glutamate receptor interaction with S-SCAM/MAGI-2 protein. Biochem Biophys Res Commun. 2003;301:1122–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Bergersen L, Waerhaug O, Helm J, Thomas M, Laake P, Davies AJ. et al A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with δ-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res. 2001;136:523–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Hung AY, Sheng M. PDZ domains: structural modules for protein complex assembly. J Biol Chem. 2002;277:5699–702.PubMedCrossRefGoogle Scholar
  35. 35.
    Hirano T, Kasono K, Araki K, Mishina M. Suppression of LTD in cultured Purkinje cells deficient in the glutamate receptor δ2 subunit. NeuroReport. 1995;6:524–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Takeuchi T, Miyazaki T, Watanabe M, Mori H, Sakimura K, Mishina M. Control of synaptic connection by glutamate receptor δ2 in the adult cerebellum. J Neurosci. 2005;25:2146–56.PubMedCrossRefGoogle Scholar
  37. 37.
    Kurihara H, Hashimoto K, Kano M, Takayama C, Sakimura K, Mishina M, et al. Impaired parallel fiber-Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor δ2 subunit. J Neurosci. 1997;17:9613–23.PubMedGoogle Scholar
  38. 38.
    Hashimoto K, Kano M. Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum. Neuron. 2003;38:785–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Hashimoto K, Ichikawa R, Takechi H, Inoue Y, Aiba A, Sakimura K, et al. Roles of glutamate receptor δ2 subunit (GluRδ2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci. 2001;21:9701–12.PubMedGoogle Scholar
  40. 40.
    Ichikawa R, Miyazaki T, Kano M, Hashikawa T, Tatsumi H, Sakimura K, et al. Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar Purkinje cells lacking glutamate receptor δ2. J Neurosci. 2002;22:8487–503.PubMedGoogle Scholar
  41. 41.
    Kano M, Hashimoto K, Chen C, Abeliovich A, Aiba A, Kurihara H, et al. Impaired synapse elimination during cerebellar development in PKCγ mutant mice. Cell. 1995;83:1223–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Offermans S, Hashimoto K, Watanabe M, Sun W, Kurihara H, Thompson RF, et al. Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Gαq. Proc Natl Acad Sci U S A. 1997;94:14089–94.CrossRefGoogle Scholar
  43. 43.
    Kano M, Hashimoto K, Watanabe M, Kurihara H, Offermanns S, Jiang H, et al. Phospholipase Cβ4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proc Natl Acad Sci U S A. 1998;95:15724–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Morando L, Cesa R, Rasetti R, Harvey R, Strata P. Role of glutamate δ2 receptors in activity-dependent competition between heterologous afferent fibers. Proc Natl Acad Sci U S A. 2001;98:9954–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Scheiffele P, Fan J, Choih J, Fetter R, Serafini T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell. 2000;101:657–69.PubMedCrossRefGoogle Scholar
  46. 46.
    Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455:903–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, et al. SynCAM, a synaptic adhesion molecule that drives synaptic assembly. Science. 2002;297:1525–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Kim S, Burette A, Chung HS, Kwon SK, Woo J, Lee HW, et al. NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. Nat Neurosci. 2006;9:1294–301.PubMedCrossRefGoogle Scholar
  49. 49.
    Kayser MS, McClelland AC, Hughes EG, Dalva MB. Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. J Neurosci. 2006;26:12152–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Linhoff MW, Lauren J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, et al. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron. 2009;61:734–49.PubMedCrossRefGoogle Scholar
  51. 51.
    Gerrow K, Husseini AE. Cell adhesion molecules at the synapse. Front Biosci. 2006;11:2400–19.PubMedCrossRefGoogle Scholar
  52. 52.
    Ko J, Fuccillo MV, Malenka RC, Sudhof TC. LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron. 2009;64:791–8.PubMedCrossRefGoogle Scholar
  53. 53.
    de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN, et al. LRRTM2 interacts with neurexin1 and regulates excitatory synapse formation. Neuron. 2009;64:799–806.PubMedCrossRefGoogle Scholar
  54. 54.
    Woo J, Kwon S, Kim E. The NGL family of leucine-rich repeat-containing synaptic adhesion molecules. Mol Cell Neurosci. 2009;42:1–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Martinez A, Soriano E. Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. Brain Res Rev. 2005;49:211–26.PubMedCrossRefGoogle Scholar
  56. 56.
    Hirai H, Pang Z, Bao D, Miyazaki T, Li L, Miura E, et al. Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci. 2005;8:1534–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Ito-Ishida A, Miura E, Emi K, Matsuda K, Iijima T, Kondo T, et al. Cbln1 regulates rapid formation and maintenance of excitatory synapses in mature cerebellar Purkinje cells in vitro and in vivo. J Neurosci. 2008;28:5920–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459:569–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Shimokaze T, Kato M, Yoshimura Y, Takahashi Y, Hayasaka K. A case of acute cerebellitis accompanied by autoantibodies against glutamate receptor delta2. Brain Dev. 2007;29:224–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Shiihara T, Kato M, Konno A, Takahashi Y, Hayasaka K. Acute cerebellar ataxia and consecutive cerebellitis produced by glutamate receptor delta2 autoantibody. Brain Dev. 2007;29:254–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Matsuda S, Yuzaki M. Mutation in hotfoot-4J mice results in retention of δ2 glutamate receptors in ER. Eur J Neurosci. 2002;16:1507–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, et al. Ionotropic glutamate-like receptor δ2 binds D-serine and glycine. Proc Natl Acad Sci U S A. 2007;104:14116–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Hirai H, Launey T, Mikawa S, Torashima T, Yanagihara D, Kasaura T, et al. New role of δ2-glutamate receptors in AMPA receptor trafficking and cerebellar function. Nat Neurosci. 2003;6:869–76.PubMedCrossRefGoogle Scholar
  64. 64.
    Kina S, Tezuka T, Kusakawa S, Kishimoto Y, Kakizawa S, Hashimoto K, et al. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur J Neurosci. 2007;26:2269–78.PubMedCrossRefGoogle Scholar
  65. 65.
    Takeuchi T, Ohtsuki G, Yoshida T, Fukaya M, Wainai T, Yamashita M, et al. Enhancement of both long-term depression induction and optokinetic response adaptation in mice lacking delphilin. PLoS One. 2008;3:e2297.PubMedCrossRefGoogle Scholar
  66. 66.
    Jung S, Kim J, Kwon OB, Jung JH, An K, Jeong AY, et al. Input-specific synaptic plasticity in the amygdala is regulated by neuroligin-1 via postsynaptic NMDA receptors. Proc Natl Acad Sci U S A. 2010;107:4710–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Takasu MA, Dalva MB, Zigmond RE, Greenberg ME. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 2002;295:491–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Gruwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp H, et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron. 2001;32:1027–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biophysics, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations