The Cerebellum

, Volume 9, Issue 1, pp 124–135 | Cite as

Predictive Motor Timing Performance Dissociates Between Early Diseases of the Cerebellum and Parkinson's Disease

  • Martin BarešEmail author
  • Ovidiu V. Lungu
  • Ivica Husárová
  • Tomáš Gescheidt


There is evidence that both the basal ganglia and the cerebellum play a role in the neural representation of time in a variety of behaviours, but whether one of them is more important is not yet clear. To address this question in the context of predictive motor timing, we tested patients with various movement disorders implicating these two structures in a motor-timing task. Specifically, we investigated four different groups: (1) patients with early Parkinson's disease (PD); (2) patients with sporadic spinocerebellar ataxia (SCA); (3) patients with familial essential tremor (ET); and (4) matched healthy controls. We used a predictive motor-timing task that involved mediated interception of a moving target, and we assessed the effect of movement type (acceleration, deceleration and constant), speed (slow, medium and fast) and angle (0°, 15° and 30°) on performance (hit, early error and late error). The main results showed that PD group and arm ET subgroup did not significantly differ from the control group. SCA and head ET subjects (severe and mild cerebellar damage, respectively) were significantly worse at interception than the other two groups. Our findings support the idea that the basal ganglia play a less significant role in predictive motor timing than the cerebellum. The fact that SCA and ET subjects seemed to have a fundamental problem with predictive motor timing suggests that the cerebellum plays an essential role in integrating incoming visual information with the motor output in a timely manner, and that ET is a heterogeneous entity that deserves increased attention from clinicians.


Cerebellum Essential tremor Interception Motor timing Parkinson's disease Spinocerebellar ataxia 



Supported by Research Plan MŠM0021622404. Ovidiu Lungu is supported by a fellowship from Ministère du Développement économique, de l'Innovation et de l'Exportation du Québec.

We wish to thank Anne Johnson for her grammatical assistance.


  1. 1.
    Almeida QJ, Frank JS, Roy EA, Patla AE, Jog MS (2007) Dopaminergic modulation of timing control and variability in the gait of Parkinson's disease. Mov Disord 22(12):1735–1742CrossRefPubMedGoogle Scholar
  2. 2.
    Harrington DL, Haaland KY, Hermanowitz M (1998) Temporal processing in the basal ganglia. Neuropsychology 12:3–12CrossRefPubMedGoogle Scholar
  3. 3.
    Nenadic I, Gaser C, Volz HP, Rammsayer T, Häger F, Sauer H (2003) Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res 148:238–246PubMedGoogle Scholar
  4. 4.
    Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res 25:334–346CrossRefPubMedGoogle Scholar
  5. 5.
    Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D (2005) Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci 25:3919–3931CrossRefPubMedGoogle Scholar
  6. 6.
    Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J (2002) The cerebellum and event timing. Ann NY Acad Sci 978:302–317CrossRefPubMedGoogle Scholar
  7. 7.
    Ivry RB, Spencer RMC (2004) The neural representation of time. Curr Opin Neurobiol 14:225–232CrossRefPubMedGoogle Scholar
  8. 8.
    Meck WH (2005) Neuropsychology of timing and time perception. Brain Cogn 58:1–8CrossRefPubMedGoogle Scholar
  9. 9.
    Pastor MA, Day BL, Macaluso E, Friston KJ, Frackowiak RSJ (2004) The functional neuroanatomy of temporal discrimination. J Neurosci 24:2585–2591CrossRefPubMedGoogle Scholar
  10. 10.
    Schubotz RI, Friederici AD, von Cramon DY (2000) Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. Neuroimage 11:1–12CrossRefPubMedGoogle Scholar
  11. 11.
    Xu D, Liu T, Ashe J, Bushara KO (2006) Role of the olivo-cerebellar system in timing. J Neurosci 26:5990–5995CrossRefPubMedGoogle Scholar
  12. 12.
    Jahanshahi M, Jones C, Dirnberger G, Frith C (2006) The substantia nigra pars compacta and temporal processing. J Neurosci 26(47):12266–12273CrossRefPubMedGoogle Scholar
  13. 13.
    Dreher JC, Grafman J (2002) The roles of the cerebellum and basal ganglia in timing and error prediction. Eur J Neurosci 16:1609–1619CrossRefPubMedGoogle Scholar
  14. 14.
    Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT (2004) Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain 127:561–674CrossRefPubMedGoogle Scholar
  15. 15.
    Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington's disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821CrossRefPubMedGoogle Scholar
  16. 16.
    Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, Rao SM (2004) Neural representation of interval encoding and decision making. Cogn Brain Res 21:193–205CrossRefGoogle Scholar
  17. 17.
    Livesey AC, Wall MB, Smith AT (2007) Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia 45:321–331CrossRefPubMedGoogle Scholar
  18. 18.
    Lewis PA, Miall RC (2003) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255CrossRefPubMedGoogle Scholar
  19. 19.
    Bareš M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J (2007) Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res 180(2):355–365CrossRefPubMedGoogle Scholar
  20. 20.
    Louis ED, Faust PL, Vonsattel JP, Honig LS, Rajput A, Robinson CA, Rajput A, Pahwa R, Lyons KE, Ross GW, Borden S, Moskowitz CB, Lawton A, Hernandez N (2007) Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain 130(Pt 12):3297–3307CrossRefPubMedGoogle Scholar
  21. 21.
    Louis ED, Vonsattel JP (2008) The emerging neuropathology of essential tremor. Mov Disord 23(2):174–182CrossRefPubMedGoogle Scholar
  22. 22.
    Louis ED, Faust PL, Vonsattel JP, Honig LS, Henchcliffe C, Pahwa R, Lyons KE, Rios E, Erickson-Davis C, Moskowitz CB, Lawton A (2009) Older onset essential tremor: more rapid progression and more degenerative pathology. Mov Disord 24(11):1606–1612CrossRefPubMedGoogle Scholar
  23. 23.
    Louis ED, Yi H, Erickson-Davis C, Vonsattel JP, Faust PL (2009) Structural study of Purkinje cell axonal torpedoes in essential tremor. Neurosci Lett 450(3):287–291CrossRefPubMedGoogle Scholar
  24. 24.
    Fahn S, Elton RL, members of the UPDRS Development Committee (1987) Unified Parkinson's disease rating scale. In: Fahn S, Marsden CD, Calne DB, Goldstein M (eds) Recent developments in Parkinson's disease. Mac Millan Healthcare Information, Florham Park, pp 153–163Google Scholar
  25. 25.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K et al (1997) International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 145:205–211CrossRefPubMedGoogle Scholar
  26. 26.
    Fahn S, Tolosa E, Maria C (1993) Clinical rating scale for tremor. In: Jankovic J, Tolosa E (eds) Parkinson's Disease and Movement Disorders. Williams and Wilkins, Baltimore, pp 271–280Google Scholar
  27. 27.
    Suchowersky O, Reich S, Perlmutter J, Zesiewicz T, Gronseth G, Weiner WJ (2006) Quality Standards Subcommittee of the American Academy of Neurology. Practice Parameter: diagnosis and prognosis of new onset Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 11;66(7):968–975CrossRefGoogle Scholar
  28. 28.
    Bain P, Brin M, Deuschl G, Elble R, Jankovic J, Findley L, Koller WC, Pahwa R (2000) Criteria for the diagnosis of essential tremor. Neurology 54(11 Suppl 4):S7PubMedGoogle Scholar
  29. 29.
    Bareš M, Brázdil M, Kaňovský P, Jurák P, Daniel P, Kukleta M, Rektor I (2003) Apomorphine improves smooth pursuit eye movements in l-DOPA-naive parkinsonian patients. Park Rel Dis 9(3):139–144CrossRefGoogle Scholar
  30. 30.
    Grant MP, Leigh RJ, Seidman SH, Riley DE, Hanna JP (1992) Comparison of predictable smooth ocular and combined eye-head tracking behaviour in patients with lesions affecting the brainstem and cerebellum. Brain 115:1323–1342CrossRefPubMedGoogle Scholar
  31. 31.
    Axelrad JE, Louis ED, Honig LS, Flores I, Ross GW, Pahwa R, Lyons KE, Faust PL, Vonsattel JP (2008) Reduced Purkinje cell number in essential tremor: a postmortem study. Arch Neurol 65(1):101–107CrossRefPubMedGoogle Scholar
  32. 32.
    Shill HA, Adler CH, Sabbagh MN, Connor DJ, Caviness JN, Hentz JG, Beach TG (2008) Pathologic findings in prospectively ascertained essential tremor subjects. Neurology 70(16 Pt 2):1452–1455CrossRefPubMedGoogle Scholar
  33. 33.
    Quattrone A, Cerasa A, Messina D, Nicoletti G, Hagberg GE, Lemieux L, Novellino F, Lanza P, Arabia G, Salsone M (2008) Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxel-based morphometry MR imaging study. AJNR Am J Neuroradiol 29(9):1692–1697CrossRefPubMedGoogle Scholar
  34. 34.
    Farkaz S, Szirmai I, Kamondi A (2006) Impaired rhythm generation in essential tremor. Mov Disord 21(8):1196–1199CrossRefGoogle Scholar
  35. 35.
    Louis ED, Pellegrino KM, Rios E (2008) Unawareness of head tremor in essential tremor: a study of three samples of essential tremor patients. Mov Disord 23(16):2423–2424CrossRefPubMedGoogle Scholar
  36. 36.
    Minen MT, Louis ED (2008) Emergence of Parkinson's disease in essential tremor: a study of the clinical correlates in 53 patients. Mov Disord 23(11):1602–1605CrossRefPubMedGoogle Scholar
  37. 37.
    Spencer RMC, Ivry RB (2005) Comparison of patients with Parkinson’s disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing. Brain Cogn 58:84–93CrossRefPubMedGoogle Scholar
  38. 38.
    Spencer RMC, Verstynen T, Brett M, Ivry R (2007) Cerebellar activation during discrete and not continuous timed movements: an fMRI study. Neuroimage 36:378–387CrossRefPubMedGoogle Scholar
  39. 39.
    Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300:1437–1439CrossRefPubMedGoogle Scholar
  40. 40.
    Molinari M, Leggio MG, Thaut MH (2007) The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum 6(1):18–23CrossRefPubMedGoogle Scholar
  41. 41.
    Manto MU (2007) On the cerebello-cerebral interactions. Cerebellum 5(4):286–288CrossRefGoogle Scholar
  42. 42.
    Nixon PD, Passingham RE (2001) Predicting sensory events. The role of the cerebellum in motor learning. Exp Brain Res 138:251–257CrossRefPubMedGoogle Scholar
  43. 43.
    Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62CrossRefPubMedGoogle Scholar
  44. 44.
    Petacchi A, Laird AR, Fox PT, Bower JM (2005) Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25:118–128CrossRefPubMedGoogle Scholar
  45. 45.
    Jueptner M, Rijntjes M, Weiller C, Faiss JH, Timmann D, Mueller SP, Diener HC (1995) Localization of a cerebellar timing process using PET. Neurology 45:1540–1545PubMedGoogle Scholar
  46. 46.
    Houk J, Wise S (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 5:95–110CrossRefPubMedGoogle Scholar
  47. 47.
    Liu Y, Gao JH, Liotti M, Pu Y, Fox PT (1999) Temporal dissociation of parallel processing in the human subcortical outputs. Nature 400:364–367CrossRefPubMedGoogle Scholar
  48. 48.
    Bastian AJ (2006) Learning to predict future: the cerebellum adapts feed-forward movement control. Curr Opin Neurobiol 16:645–649CrossRefPubMedGoogle Scholar
  49. 49.
    Lang CE, Bastian A (1999) Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol 82:2108–2119PubMedGoogle Scholar
  50. 50.
    Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J (2007) The role of the cerebellum for predictive control of grasping. Cerebellum 6:7–17CrossRefPubMedGoogle Scholar
  51. 51.
    Rost K, Nowak DA, Timmann D, Hermsdörfer J (2005) Preserved and impaired aspects of predictive grip force control in cerebellar subjects. Clin Neurophysiol 116:1405–1414CrossRefPubMedGoogle Scholar
  52. 52.
    O’Reilly JX, Mesulam MM, Nobre AC (2008) The cerebellum predicts the timing of perceptual events. J Neurosci 28(9):2252–2260CrossRefPubMedGoogle Scholar
  53. 53.
    Hore J, Watts S (2005) Timing finger opening in overarm throwing based on a spatial representation of hand path. J Neurophysiol 93:3189–3199CrossRefPubMedGoogle Scholar
  54. 54.
    Huang C (2008) Implications on cerebellar function from information coding. Cerebellum 7(3):314–331CrossRefPubMedGoogle Scholar
  55. 55.
    Mauk MD, Buonomano DV (2004) The neural basis for temporal processing. Annu Rev Neurosci 27:307–340CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Martin Bareš
    • 1
    • 2
    Email author
  • Ovidiu V. Lungu
    • 3
  • Ivica Husárová
    • 1
  • Tomáš Gescheidt
    • 1
  1. 1.Department of NeurologySt. Anne’s Hospital Medical Faculty Masaryk University BrnoBrnoCzech Republic
  2. 2.Movement Disorders Centre BrnoBrnoCzech Republic
  3. 3.Functional Neuroimaging Unit, Geriatric InstituteUniversity of MontrealMontrealCanada

Personalised recommendations