The Cerebellum

, Volume 8, Issue 3, pp 323–333 | Cite as

The Role of Kv3-type Potassium Channels in Cerebellar Physiology and Behavior

Article

Abstract

Different subunits of the Kv3 subfamily of voltage-gated potassium (Kv) channels (Kv3.1–Kv3.4) are expressed in distinct neuronal subpopulations in the cerebellum. Behavioral phenotypes in Kv3-null mutant mice such as ataxia with prominent hypermetria and heightened alcohol sensitivity are characteristic of cerebellar dysfunction. Here, we review how the unique biophysical properties of Kv3-type potassium channels, fast activation and fast deactivation that enable cerebellar neurons to generate brief action potentials at high frequencies, affect firing patterns and influence cerebellum-mediated behavior.

Keywords

Kv3 subfamily Potassium channels Cerebellum Motor dysfunction Purkinje cell 

Notes

Acknowledgments

The authors wish to thank Drs. Kim Huber and John Welsh for critical input to the manuscript. This work was supported in part by NIH grant NS42210 (RHJ).

References

  1. 1.
    Aizenman CD, Linden DJ (1999) Regulation of rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol 82:1697–1709PubMedGoogle Scholar
  2. 2.
    Aizenman CD, Linden DJ (2000) Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nature Neurosci 3:109–111PubMedCrossRefGoogle Scholar
  3. 3.
    Aizenman CD, Manis PB, Linden DJ (1998) Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:828–835CrossRefGoogle Scholar
  4. 4.
    Aizenman CD, Huang EJ, Linden DJ (2003) Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. J Neurophysiol 89:1738–1747PubMedCrossRefGoogle Scholar
  5. 5.
    Alonso-Espinaco V, Elezgarai I, Diez-Garcia J, Puente N, Knöpfel T, Grandes P (2008) Subcellular localization of the voltage-gated potassium channels Kv3.1b and Kv3.3 in the cerebellar dentate nucleus of glutamic acid decarboxylase 67-green fluorescent protein transgenic mice. Neurosci 155:1059–1069CrossRefGoogle Scholar
  6. 6.
    Botta P, Radcliffe RA, Carta M, Mameli M, Daly E, Floyd KL, Deitrich RA (2007) Valenzuela CF modulation of GABAA receptors in cerebellar granule neurons by ethanol: a review of genetic and electrophysiological studies. Alcohol 41:187–199PubMedCrossRefGoogle Scholar
  7. 7.
    Chan E (1997) Regulation and function of Kv3.3. Ph.D. Thesis, The Rockefeller UniversityGoogle Scholar
  8. 8.
    Chan-Palay V (1997) Cerebellar dentate nucleus: organization, cytology and transmitters. Springer, New YorkGoogle Scholar
  9. 9.
    Chang SY, Zagha E, Kwon ES, Ozaita A, Bobik M, Martone ME, Ellisman MH, Heintz N, Rudy0 B (2007) Distribution of Kv3.3 potassium channel subunits in distinct neuronal populations of mouse brain. J Comp Neurol 502:953–972PubMedCrossRefGoogle Scholar
  10. 10.
    Carta M, Mameli M, Valenzuela CF (2004) Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J Neurosci 24:3746–3751PubMedCrossRefGoogle Scholar
  11. 11.
    Davie JT, Clark BA, Häusser M (2008) The origin of the complex spike in cerebellar Purkinje cells. J Neurosci 28:7599–7609PubMedCrossRefGoogle Scholar
  12. 12.
    DeMontigny C, Lamarre Y (1973) Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Res 53:81–95CrossRefGoogle Scholar
  13. 13.
    De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SKE, Ruigrok THJ (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391–400PubMedCrossRefGoogle Scholar
  14. 14.
    Erisir A, Lau D, Rudy B, Leonard CS (1999) Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J Neurophysiol 82:2476–2489PubMedGoogle Scholar
  15. 15.
    Espinosa F, McMahon A, Chan E, Wang S, Ho CS, Heintz N, Joho RH (2001) Alcohol hypersensitivity, increased locomotion, and spontaneous myoclonus in mice lacking the potassium channels Kv3.1 and Kv3.3. J Neurosci 21:6657–6665PubMedGoogle Scholar
  16. 16.
    Espinosa F, Marks GA, Heintz N, Joho RH (2004) Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behavior 3:90–100CrossRefGoogle Scholar
  17. 17.
    Espinosa F, Torres-Vega MA, Marks GA, Joho RH (2008) Ablation of Kv3.1 and Kv3.3 potassium channels disrupts thalamocortical oscillations in vitro and in vivo. J Neurosci 28:5570–5581PubMedCrossRefGoogle Scholar
  18. 18.
    Fowler SC, Birkestrand BR, Chen R, Moss SJ, Vorontsova E, Wang G, Zarcone TJ (2001) A force-plate actometer for quantitating rodent behaviors: illustrative data on locomotion, rotation, spatial pattering, stereotypies, and tremor. J Neurosci Methods 107:107–124PubMedCrossRefGoogle Scholar
  19. 19.
    Fukuda M, Yamamoto T, Llinás R (2001) The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study. Europ J Neurosci 13:315–326CrossRefGoogle Scholar
  20. 20.
    Gibson AR, Horn KM, Pong M (2002) Inhibitory control of olivary discharge. Ann N Y Acad Sci 978:219–231PubMedCrossRefGoogle Scholar
  21. 21.
    Goldman-Wohl DS, Chan E, Baird D, Heintz N (1994) Kv3.3b: A novel Shaw type potassium channel expressed in terminally differentiated cerebellar Purkinje cells and deep cerebellar nuclei. J Neurosci 14:511–522PubMedGoogle Scholar
  22. 22.
    Goldowitz D, Moran TH, Wetts R (1992) Mouse chimeras in the study of genetic and structural determinants of behavior. In: Goldowitz D, Wahlsten D, Wimer RE (eds) Techniques for the genetic analysis of brain and behavior. Elsevier, AmsterdamGoogle Scholar
  23. 23.
    Hanchar HJ, Dodson PD, Olsen RW, Otis TS, Wallner M (2005) Alcohol-induced motor impairment caused by increased extrasynaptic GABAA receptor activity. Nat Neurosci 8:339–345PubMedCrossRefGoogle Scholar
  24. 24.
    Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, SunderlandGoogle Scholar
  25. 25.
    Ho CS, Grange RW, Joho RH (1997) Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skills and muscle contraction, but no seizures. Proc Natl Acad Sci USA 94:1533–1538PubMedCrossRefGoogle Scholar
  26. 26.
    Hurlock EC, McMahon A, Joho RH (2008) Purkinje-cell-restricted restoration of Kv3.3 function restores complex spikes and rescues motor coordination in KCNC3 mutants. J Neurosci 28:4640–4648PubMedCrossRefGoogle Scholar
  27. 27.
    Ito M, Simpson JI (1971) Discharges in Purkinje cells axons during climbing fiber activation. Brain Res 31:215–219PubMedCrossRefGoogle Scholar
  28. 28.
    Joho RH, Ho CS, Marks GA (1999) Increased gamma- and decreased delta-oscillations in a mouse deficient for a potassium channel expressed in fast-spiking interneurons. J Neurophysiol 82:1855–1864PubMedGoogle Scholar
  29. 29.
    Joho RH, Street C, Matsushita S, Knöpfel T (2006a) Behavioral motor dysfunction in Kv3-type potassium channel-deficient mice. Genes Brain Behavior 5:472–482CrossRefGoogle Scholar
  30. 30.
    Joho RH, Marks GA, Espinosa F (2006b) Kv3 potassium channels control the duration of different arousal states by distinct stochastic and clock-like mechanisms. Europ J Neurosci 23:1567–1574CrossRefGoogle Scholar
  31. 31.
    Khaliq ZM, Raman IM (2005) Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons. J Neurosci 25:454–463PubMedCrossRefGoogle Scholar
  32. 32.
    Kistler WM, De Jeu MTG, Elgersma Y, van der Giessen RS, Hensbroek R, Luo C, Koekkoek SKE, Hoogenraad CC, Hamers FPT, Gueldenagel M, Sohl G, Willecke K, De Zeeuw CI (2002) Analysis of Cx36 knockout does not support tenet that olivary gap junctions are required for complex spike synchronization and normal motor performance. Ann N Y Acad Sci 978:391–404PubMedCrossRefGoogle Scholar
  33. 33.
    Kitai ST, McCrea RA, Preston RJ, Bishop GA (1977) Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. I. Climbing fiber system. Brain Res 122:197–214PubMedCrossRefGoogle Scholar
  34. 34.
    Lau D, Vega-Saenz de Miera E, Contreras D, Ozaita A, Harvey M, Chow A, Noebels JL, Paylor R, Morgan JI, Leonard CS, Rudy B (2000) Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel protein. J Neurosci 20:9071–9085PubMedGoogle Scholar
  35. 35.
    Laube G, Röper J, Pitt JC, Sewing S, Kistner U, Garner CC, Pongs O, Veh RW (1996) Ultrastructural localization of Shaker-related potassium channel subunits and synapse-associated protein 90 to septate-like junctions in rat cerebellar Pinceaux. Mol Brain Res 42:51–61PubMedCrossRefGoogle Scholar
  36. 36.
    Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068PubMedGoogle Scholar
  37. 37.
    Llinás R (1974) Eighteenth Bowditch lecture: motor aspects of cerebellar control. Physiol 17:19–26Google Scholar
  38. 38.
    Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Sci 242:1654–1664CrossRefGoogle Scholar
  39. 39.
    Llinás RR (1991) The noncontinuous nature of movement execution. In: Humphrey DR, Freund HJ (eds) Motor control, concepts and issues. Wiley, New YorkGoogle Scholar
  40. 40.
    Llinás R, Mühlenthaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in in vitro brain-stem cerebellar preparation. J Physiol (Lond.) 404:241–258Google Scholar
  41. 41.
    Llinás R, Volkind RA (1973) The olivocerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res 18:69–87PubMedCrossRefGoogle Scholar
  42. 42.
    Long MA, Deans MR, Paul DL, Connors BW (2002) Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 22:10898–10905PubMedGoogle Scholar
  43. 43.
    Mano N, Yamamoto K (1980) Simple-spike activity of cerebellar Purkinje cells related to visually guided wrist tracking movement in the monkey. J Neurophysiol 43:713–728PubMedGoogle Scholar
  44. 44.
    Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:8111–8125PubMedGoogle Scholar
  45. 45.
    Martina M, Yao GL, Bean BP (2003) Properties and functional role of voltage-dependent potassium channels in dendrites of rat cerebellar Purkinje neurons. J Neurosci 23:5698–5707PubMedGoogle Scholar
  46. 46.
    Matsukawa H, Wolf AM, Matsushita S, Joho RH, Knöpfel T (2003) Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking the potassium channels Kv3.1 and Kv3.3. J Neurosci 23:7677–7684PubMedGoogle Scholar
  47. 47.
    McCrea RA, Bishop GA, Kitai ST (1977) Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. II. Mossy fiber system. Brain Res 122:215–228PubMedCrossRefGoogle Scholar
  48. 48.
    McKay BE, Turner RW (2004) Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells. Europ J Neurosci 20:729–739CrossRefGoogle Scholar
  49. 49.
    McKay BE, Molineux ML, Mehaffey WH, Turner RW (2005) Kv1 K+ channels control Purkinje cell output to facilitate postsynaptic rebound discharge in deep cerebellar neurons. J Neurosci 25:1481–1492PubMedCrossRefGoogle Scholar
  50. 50.
    McMahon A, Fowler SC, Perney T, Joho RH (2004) Altered olivocerebellar circuit properties in the absence of the voltage-gated potassium channels Kv3.1 and Kv3.3. Europ J Neurosci 19:3317–3327CrossRefGoogle Scholar
  51. 51.
    Monsivais P, Clark BA, Roth A, Häusser M (2005) Determinants of action potential propagation in cerebellar Purkinje cell axons. J Neurosci 25:464–472PubMedCrossRefGoogle Scholar
  52. 52.
    Molineux ML, McRory JE, McKay BE, Mehaffey WH, Rehak R, Snutch TP, Zamponi GW, Turner RW (2006) Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proc Natl Acad Sci USA 103:5555–5560PubMedCrossRefGoogle Scholar
  53. 53.
    Molineux ML, Mehaffey WH, Tadayonnejad R, Anderson D, Tennent AF, Turner RW (2008) Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons. J Neurophysiol 100:2684–2701PubMedCrossRefGoogle Scholar
  54. 54.
    Ozaita A, Martone ME, Ellisman MH, Rudy B (2002) Differential subcellular localization of the two alternatively spliced isoforms of the Kv3.1 potassium channel subunit in brain. J Neurophysiol 88:394–408PubMedGoogle Scholar
  55. 55.
    Pedroarena CM, Schwarz C (2003) Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. J Neurophysiol 89:704–715PubMedCrossRefGoogle Scholar
  56. 56.
    Perney TM, Marshall J, Martin KA, Hockfield S, Kaczmarek LK (1992) Expression of the mRNAs for Kv3.1 potassium channel gene in the adult and developing rat brain. J Neurophysiol 68:756–766PubMedGoogle Scholar
  57. 57.
    Placantonakis DG, Bukovsky AA, Zeng X-H, Kiem H-P, Welsh JP (2004) Fundamental role of inferior olive connexin 36 in muscle coherence during tremor. Proc Natl Acad Sci USA 101:7164–7169PubMedCrossRefGoogle Scholar
  58. 58.
    Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517–526PubMedCrossRefGoogle Scholar
  59. 59.
    Sacco T, De Luca A, Tempia F (2006) Properties and expression of Kv3 channels in cerebellar Purkinje cells. Mol Cell Neurosci 33:170–179PubMedCrossRefGoogle Scholar
  60. 60.
    Sánchez JA, Ho CS, Vaughan DM, Garcia MC, Grange RW, Joho RH (2000) Muscle and motor-skill dysfunction in a K+ channel-deficient mouse are not due to altered muscle excitability or fiber type but depend on the genetic background. Pflügers Arch 440:34–41PubMedGoogle Scholar
  61. 61.
    Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C (2002) The making of a complex spike: ionic composition and plasticity. Ann N Y Acad Sci 978:359–390PubMedCrossRefGoogle Scholar
  62. 62.
    Sekirnjak C, Martone ME, Weiser M, Deerinck T, Bueno E, Rudy B, Ellisman M (1997) Subcellular localization of K+ channel subunit Kv3.1b in selected rat CNS neurons. Brain Res 766:173–187PubMedCrossRefGoogle Scholar
  63. 63.
    Telgkamp P, Raman IM (2002) Depression of inhibitory synaptic transmission between Purkinje cells and neurons of the cerebellar nuclei. J Neurosci 22:8447–8457PubMedGoogle Scholar
  64. 64.
    Telgkamp P, Padgett DE, Ledoux VA, Wolley CS, Raman IM (2004) Maintenance of high-frequency transmission at Purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites. Neuron 41:113–126PubMedCrossRefGoogle Scholar
  65. 65.
    Uusisaari M, Obata K, Knöpfel T (2007) Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol 97:901–911PubMedCrossRefGoogle Scholar
  66. 66.
    Vyazovskiy VV, Deboer T, Rudy B, Lau D, Borbély AA, Tobler I (2002) Sleep EEG in mice that are deficient in the potassium channel subunit Kv3.2. Brain Res 947:204–211PubMedCrossRefGoogle Scholar
  67. 67.
    Wang L-Y, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509:183–194PubMedCrossRefGoogle Scholar
  68. 68.
    Watanabe D, Inokawa H, Hashimoto K, Suzuki N, Kano M, Shigemoto R, Hirano T, Toyama K, Kaneko S, Yokoi M, Moriyoshi K, Suzuki M, Kobayashi K, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S (1998) Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95:17–27PubMedCrossRefGoogle Scholar
  69. 69.
    Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JPA, Nolte D, Mock AF, Evidente VG, Fee D, Müller U, Dürr A, Brice A, Papazian DM, Pulst SM (2006) Mutations in the voltage-gated potassium channel KCNC3 cause degenerative and developmental CNS phenotypes. Nat Genet 38:447–451PubMedCrossRefGoogle Scholar
  70. 70.
    Weiser M, Vega-Saenz de Miera E, Kentros C, Moreno H, Franzen L, Hillman D, Baker H, Rudy B (1994) Differential expression of Shaw-related K+ channels in the rat central nervous system. J Neurosci 14:949–972PubMedGoogle Scholar
  71. 71.
    Weiser M, Bueno E, Sekirnjak C, Martone ME, Baker H, Hillman D, Chen S, Thornhill W, Rudy B (1995) The potassium channel subunit Kv3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons. J Neurosci 15:4298–4314PubMedGoogle Scholar
  72. 72.
    Welsh JP (2002) Functional significance of climbing-fiber synchrony. A population coding and behavioral analysis. Ann NY Acad Sci 978:188–204PubMedCrossRefGoogle Scholar
  73. 73.
    Welsh JP, Llinás R (1997) Some organizing principles for the control of movement based on olivocerebellar physiology. Prog Brain Res 114:449–461PubMedCrossRefGoogle Scholar
  74. 74.
    Welsh JP, Lang EJ, Sugihara I, Llinás R (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374:453–457PubMedCrossRefGoogle Scholar
  75. 75.
    Wigmore MA, Lacey MG (2000) A Kv3-like persistent, outwardly rectifying, Cs+-permeable, K+ current in rat subthalamic nucleus neurons. J Physiol 527:493–506PubMedCrossRefGoogle Scholar
  76. 76.
    Yarom Y, Cohen D (2002) The olivocerebellar system as a generator of temporal patterns. Ann N Y Acad Sci 978:122–134PubMedCrossRefGoogle Scholar
  77. 77.
    Zagha E, Lang EJ, Rudy B (2008) Kv3.3 channels at the Purkinje cell soma are necessary for generation of the classical complex spike waveform. J Neurosci 28:1291–1300PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang W, Shin JH, Linden DJ (2004) Persistent changes in the intrinsic excitability of rat deep cerebellar nuclear neurons induced by EPSP or IPSP bursts. J Physiol 561(3):703–719PubMedCrossRefGoogle Scholar
  79. 79.
    Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB, Orr HT (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 24:8853–8861PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of NeuroscienceThe University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations