The Cerebellum

, Volume 8, Issue 3, pp 277–290 | Cite as

Physiological Purkinje Cell Death Is Spatiotemporally Organized in the Developing Mouse Cerebellum

  • Jakob JankowskiEmail author
  • Andreas Miething
  • Karl Schilling
  • Stephan L. BaaderEmail author


Physiological cell death is crucial for matching defined cellular populations within the central nervous system. Whereas the time course of developmental cell death in the central nervous system is well analyzed, information about its precise spatial patterning is scarce. Yet, the latter one is needed to appraise its contribution to circuit formation and refinement. Here, we document that during normal cerebellar development, dying Purkinje cells were highly localized within the vermal midline and in a lobule specific, parasagittal pattern along the whole mediolateral axis. In addition, single hot spots of cell death localized to the caudal declive and ventral lobule IX within the posterolateral fissure. These hot spots of dying Purkinje cells partly overlapped with gaps within the Purkinje cell layer which supports the classification of different gaps based on histological and molecular criteria, i.e., midline gap, patchy gaps, and raphes. Areas characterized by a high incidence of Purkinje cell death and gaps colocalize with known molecular and functional boundaries within the cerebellar cortex. Physiological cell death can thus be considered to serve as an important regulator of cerebellar histogenesis.


Apoptosis Patterning Compartment Morphogenesis Bergmann glia Midline gap Raphe 



We very much appreciate the expert technical assistance of Alice Ihmer and Helma Langmann and the perfect husbandry of mice by Franz Neuhalfen and Daniela Hupfer.


  1. 1.
    Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 231:42–65PubMedCrossRefGoogle Scholar
  2. 2.
    Armengol JA, Sotelo C (1991) Early dendritic development of Purkinje cells in the rat cerebellum. A light and electron microscopic study using axonal tracing in ‘in vitro’ slices. Dev Brain Res 64:95–114CrossRefGoogle Scholar
  3. 3.
    Armstrong DM, Schild RF (1978) An investigation of the cerebellar cortico-nuclear projections in the rat using an autoradiographic tracing method. I. Projections from the vermis. Brain Res 141:1–19PubMedCrossRefGoogle Scholar
  4. 4.
    Ashwell K (1990) Microglia and cell death in the developing mouse cerebellum. Brain Res Dev Brain Res 55:219–230PubMedCrossRefGoogle Scholar
  5. 5.
    Baader SL, Sanlioglu S, Berrebi AS, Parker-Thornburg J, Oberdick J (1998) Ectopic overexpression of Engrailed-2 in cerebellar Purkinje cells causes restricted cell loss and retarded external germinal layer development at lobule junctions. J Neurosci 18:1763–1773PubMedGoogle Scholar
  6. 6.
    Baader SL, Vogel MW, Zhang X, Sanlioglu S, Oberdick J (1999) Selective disruption of “late onset” sagittal banding patterns by ectopic expression of Engrailed-2 in cerebellar Purkinje cells. J Neurosci 19:5370–5379PubMedGoogle Scholar
  7. 7.
    Bravin M, Savio T, Strata P, Rossi F (1997) Olivocerebellar axon regeneration and target reinnervation following dissociated Schwann cell grafts in surgically injured cerebella of adult rats. Eur J Neurosci 9:2634–2649PubMedCrossRefGoogle Scholar
  8. 8.
    Buhren J, Christoph AH, Buslei R, Albrecht S, Wiestler OD, Pietsch T (2000) Expression of the neurotrophin receptor p75NTR in medulloblastomas is correlated with distinct histological and clinical features: evidence for a medulloblastoma subtype derived from the external granule cell layer. J Neuropathol Exp Neurol 59:229–240PubMedGoogle Scholar
  9. 9.
    Buss RR, Sun W, Oppenheim RW (2006) Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci 29:1–35PubMedCrossRefGoogle Scholar
  10. 10.
    Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475PubMedCrossRefGoogle Scholar
  11. 11.
    Chu T, Hullinger H, Schilling K, Oberdick J (2000) Spatial and temporal changes in natural and target deprivation-induced cell death in the mouse inferior olive. J Neurobiol 43:18–30PubMedCrossRefGoogle Scholar
  12. 12.
    Clarke PG, Posada A, Primi MP, Castagne V (1998) Neuronal death in the central nervous system during development. Biomed Pharmacother 52:356–362PubMedCrossRefGoogle Scholar
  13. 13.
    Copp AJ (2005) Neurulation in the cranial region—normal and abnormal. J Anat 207:623–635PubMedGoogle Scholar
  14. 14.
    Costa S, Planchenault T, Charriere-Bertrand C, Mouchel Y, Fages C, Juliano S, Lefrancois T, Barlovatz-Meimon G, Tardy M (2002) Astroglial permissivity for neuritic outgrowth in neuron-astrocyte cocultures depends on regulation of laminin bioavailability. Glia 37:105–113PubMedCrossRefGoogle Scholar
  15. 15.
    de Freitas MS, Spohr TC, Benedito AB, Caetano MS, Margulis B, Lopes UG, Moura-Neto V (2002) Neurite outgrowth is impaired on HSP70-positive astrocytes through a mechanism that requires NF-kappaB activation. Brain Res 958:359–370PubMedCrossRefGoogle Scholar
  16. 16.
    Dusart I, Airaksinen MS, Sotelo C (1997) Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci 17:3710–3726PubMedGoogle Scholar
  17. 17.
    Dusart I, Ghoumari A, Wehrle R, Morel MP, Bouslama-Oueghlani L, Camand E, Sotelo C (2005) Cell death and axon regeneration of Purkinje cells after axotomy: challenges of classical hypotheses of axon regeneration. Brain Res Brain Res Rev 49:300–316PubMedCrossRefGoogle Scholar
  18. 18.
    Dusart I, Guenet JL, Sotelo C (2006) Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum 5:163–173PubMedCrossRefGoogle Scholar
  19. 19.
    Dusart I, Morel MP, Wehrle R, Sotelo C (1999) Late axonal sprouting of injured Purkinje cells and its temporal correlation with permissive changes in the glial scar. J Comp Neurol 408:399–418PubMedCrossRefGoogle Scholar
  20. 20.
    Fan H, Favero M, Vogel MW (2001) Elimination of Bax expression in mice increases cerebellar Purkinje cell numbers but not the number of granule cells. J Comp Neurol 436:82–91PubMedCrossRefGoogle Scholar
  21. 21.
    Fisher M, Trimmer P, Ruthel G (1993) Bergmann glia require continuous association with Purkinje cells for normal phenotype expression. Glia 8:172–182PubMedCrossRefGoogle Scholar
  22. 22.
    Florez-McClure ML, Linseman DA, Chu CT, Barker PA, Bouchard RJ, Le SS, Laessig TA, Heidenreich KA (2004) The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J Neurosci 24:4498–4509PubMedCrossRefGoogle Scholar
  23. 23.
    Fuhrman Y, Piat G, Thomson MA, Mariani J, Delhaye-Bouchaud N (1995) Abnormal ipsilateral functional vibrissae projection onto Purkinje cells multiply innervated by climbing fibers in the rat. Brain Res Dev Brain Res 87:172–178PubMedCrossRefGoogle Scholar
  24. 24.
    Ghoumari AM, Wehrle R, Bernard O, Sotelo C, Dusart I (2000) Implicaton of Bcl-2 and Caspase-3 in age-related Purkinje cell death in murine organotypic culture: an in vitro model to study apoptosis. Eur J Neurosci 12:2935–2949PubMedCrossRefGoogle Scholar
  25. 25.
    Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324–1335PubMedCrossRefGoogle Scholar
  26. 26.
    Goldowitz D (1989) Cell allocation in mammalian CNS formation: evidence from murine interspecies aggregation chimeras. Neuron 3:705–713PubMedCrossRefGoogle Scholar
  27. 27.
    Goswami J, Martin LA, Goldowitz D, Beitz AJ, Feddersen RM (2005) Enhanced Purkinje cell survival but compromised cerebellar function in targeted anti-apoptotic protein transgenic mice. Mol Cell Neurosci 29:202–221PubMedCrossRefGoogle Scholar
  28. 28.
    Haines DE (1975) Cerebellar cortical efferents of the posterior lobe vermis in a prosimian primate (Galago) and the tree shrew (Tupaia). J Comp Neurol 163:21–39PubMedCrossRefGoogle Scholar
  29. 29.
    Haines DE, Rubertone JA (1979) Cerebellar corticonuclear fibers of the dorsal culminate lobule (anterior lobe–lobule V) in a prosimian primate, Galago senegalensis. J Comp Neurol 186:321–341PubMedCrossRefGoogle Scholar
  30. 30.
    Hashimoto K, Kano M (2003) Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum. Neuron 38:785–796PubMedCrossRefGoogle Scholar
  31. 31.
    Herrup K, Trenkner E (1987) Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action. Neuroscience 23:871–885PubMedCrossRefGoogle Scholar
  32. 32.
    Hess BH, Krewet JA, Tolbert DL (2003) Olivocerebellar projections are necessary for exogenous trophic factors to delay heredo-Purkinje cell degeneration. Brain Res 986:54–62PubMedCrossRefGoogle Scholar
  33. 33.
    Inouye M, Murakami U (1980) Temporal and spatial patterns of Purkinje cell formation in the mouse cerebellum. J Comp Neurol 194:499–503PubMedCrossRefGoogle Scholar
  34. 34.
    Jankowski J, Holst MI, Liebig C, Oberdick J, Baader SL (2004) Engrailed-2 negatively regulates the onset of perinatal Purkinje cell differentiation. J Comp Neurol 472:87–99PubMedCrossRefGoogle Scholar
  35. 35.
    Jensen P, Surmeier DJ, Goldowitz D (1999) Rescue of cerebellar granule cells from death in weaver NR1 double mutants. J Neurosci 19:7991–7998PubMedGoogle Scholar
  36. 36.
    Jung AR, Kim TW, Rhyu IJ, Kim H, Lee YD, Vinsant S, Oppenheim RW, Sun W (2008) Misplacement of Purkinje cells during postnatal development in Bax knock-out mice: a novel role for programmed cell death in the nervous system? J Neurosci 28:2941–2948PubMedCrossRefGoogle Scholar
  37. 37.
    Karam SD, Kim YS, Bothwell M (2001) Granule cells migrate within raphes in the developing cerebellum: an evolutionarily conserved morphogenic event. J Comp Neurol 440:127–135PubMedCrossRefGoogle Scholar
  38. 38.
    Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, Stern DM, Kano M, Ozawa K, Ogawa S (2004) ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci 24:1486–1496PubMedCrossRefGoogle Scholar
  39. 39.
    Kuan CY, Roth KA, Flavell RA, Rakic P (2000) Mechanisms of programmed cell death in the developing brain. TINS 23:291–297PubMedGoogle Scholar
  40. 40.
    Kuemerle B, Zanjani HS, Joyner AL, Herrup K (1997) Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J Neurosci 17:7881–7889PubMedGoogle Scholar
  41. 41.
    Larramendi PCH (1985) Method of retrieval of one to two micron sections from glass for ultrathin sectioning. J Electron Microsc Tech 2:645–646CrossRefGoogle Scholar
  42. 42.
    Lin JC, Cepko CL (1998) Granule cell raphes and parasagittal domains of Purkinje cells: complementary patterns in the developing chick cerebellum. J Neurosci 18:9342–9353PubMedGoogle Scholar
  43. 43.
    Luckner R, Obst-Pernberg K, Hirano S, Suzuki ST, Redies C (2001) Granule cell raphes in the developing mouse cerebellum. Cell Tissue Res 303:159–172PubMedCrossRefGoogle Scholar
  44. 44.
    Madalosso SH, Perez-Villegas EM, Armengol JA (2005) Naturally occurring neuronal death during the postnatal development of Purkinje cells and their precerebellar afferent projections. Brain Res Brain Res Rev 49:267–279PubMedCrossRefGoogle Scholar
  45. 45.
    Marani E, Voogd J (1979) The morphology of the mouse cerebellum. Acta Morphol Neerl Scand 17:33–52PubMedGoogle Scholar
  46. 46.
    Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41:535–547PubMedCrossRefGoogle Scholar
  47. 47.
    Miale IR, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296PubMedCrossRefGoogle Scholar
  48. 48.
    Miething A (1992) Ultrathin sectioning of different areas of the same semithin section. Microsc Res Tech 21:73–74PubMedCrossRefGoogle Scholar
  49. 49.
    O'Hearn E, Molliver ME (1993) Degeneration of Purkinje cells in parasagittal zones of the cerebellar vermis after treatment with ibogaine or harmaline. Neuroscience 55:303–310PubMedCrossRefGoogle Scholar
  50. 50.
    Okugawa G, Sedvall GC, Agartz I (2003) Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry 160:1614–1617PubMedCrossRefGoogle Scholar
  51. 51.
    Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11:126–129PubMedCrossRefGoogle Scholar
  52. 52.
    Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20:633–647PubMedCrossRefGoogle Scholar
  53. 53.
    Raz N, Dupuis JH, Briggs SD, McGavran C, Acker JD (1998) Differential effects of age and sex on the cerebellar hemispheres and the vermis: a prospective MR study. AJNR Am J Neuroradiol 19:65–71PubMedGoogle Scholar
  54. 54.
    Ryabinin AE, Cole M, Bloom FE, Wilson MC (1995) Exposure of neonatal rats to alcohol by vapor inhalation demonstrates specificity of microcephaly and Purkinje cell loss but not astrogliosis. Alcohol Clin Exp Res 19:784–791PubMedCrossRefGoogle Scholar
  55. 55.
    Sarna JR, Hawkes R (2003) Patterned Purkinje cell death in the cerebellum. Prog Neurobiol 70:473–507PubMedGoogle Scholar
  56. 56.
    Selimi F, Vogel MW, Mariani J (2000) Bax inactivation in lurcher mutants rescues cerebellar granule cells but not Purkinje cells or inferior olivary neurons. J Neurosci 20:5339–5345PubMedGoogle Scholar
  57. 57.
    Sillitoe RV, Hawkes R (2002) Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J Histochem Cytochem 50:235–244PubMedGoogle Scholar
  58. 58.
    Smeyne RJ, Chu T, Lewin A, Bian F, Crisman SS, Kunsch C, Lira SA, Oberdick J (1995) Local control of granule cell generation by cerebellar Purkinje cells. Mol Cell Neurosci 6:230–251PubMedCrossRefGoogle Scholar
  59. 59.
    Smeyne RJ, Goldowitz D (1989) Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study. J Neurosci 9:1608–1620PubMedGoogle Scholar
  60. 60.
    Smeyne RJ, Goldowitz D (1990) Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: evidence from chimeric mice. Brain Res Dev Brain Res 52:211–218PubMedCrossRefGoogle Scholar
  61. 61.
    Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M (1994) Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci 14:124–133PubMedGoogle Scholar
  62. 62.
    Wassef M, Cholley B, Heizmann CW, Sotelo C (1992) Development of the olivocerebellar projection in the rat: II. Matching of the developmental compartmentations of the cerebellum and inferior olive through the projection map. J Comp Neurol 323:537–550PubMedCrossRefGoogle Scholar
  63. 63.
    Wassef M, Sotelo C, Cholley B, Brehier A, Thomasset M (1987) Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev Biol 124:379–389PubMedCrossRefGoogle Scholar
  64. 64.
    Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron 22:103–114PubMedCrossRefGoogle Scholar
  65. 65.
    Weil M, Jacobson MD, Raff MC (1997) Is programmed cell death required for neural tube closure? Curr Biol 7:281–284PubMedCrossRefGoogle Scholar
  66. 66.
    Wetts R, Herrup K (1982a) Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimaeric mice. I. Qualitative studies. J Embryol Exp Morphol 68:87–98Google Scholar
  67. 67.
    Wetts R, Herrup K (1982b) Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II Granule cell death. Brain Res 250:358–362CrossRefGoogle Scholar
  68. 68.
    Williams BL, Yaddanapudi K, Hornig M, Lipkin WI (2007) Spatiotemporal analysis of Purkinje cell degeneration relative to parasagittal expression domains in a model of neonatal viral infection. J Virol 81:2675–2687PubMedCrossRefGoogle Scholar
  69. 69.
    Yeo W, Gautier J (2004) Early neural cell death: dying to become neurons. Dev Biol 274:233–244PubMedCrossRefGoogle Scholar
  70. 70.
    Yong RL, Kavanagh EC, Fenton D, Dorovini-Zis K, Heran MK, Haw CS (2006) Midline cerebellar medulloblastoma in a seventy-one-year-old patient. Can J Neurol Sci 33:101–104PubMedGoogle Scholar
  71. 71.
    Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (2002) A novel protein complex linking the ε2 glutamate receptor and autophagy: implications for neurodegeneration in Lurcher mice. Neuron 35:921–933PubMedCrossRefGoogle Scholar
  72. 72.
    Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J (1996) Increased cerebellar Purkinje cell numbers in mice overexpressing a human Bcl-2 transgene. J Comp Neurol 374:332–341PubMedCrossRefGoogle Scholar
  73. 73.
    Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J (1997) Increased inferior olivary neuron and cerebellar granule cell numbers in transgenic mice overexpressing the human Bcl-2 gene. J Neurobiol 32:502–516PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Anatomy, Anatomy and Cell BiologyUniversity of BonnBonnGermany
  2. 2.Institute of Anatomy, NeuroanatomyUniversity of BonnBonnGermany

Personalised recommendations