Advertisement

The Cerebellum

, Volume 8, Issue 2, pp 74–79 | Cite as

Iron, Copper, and Zinc Distribution of the Cerebellum

  • Bogdan F. Gh. Popescu
  • Christopher A. Robinson
  • Alex Rajput
  • Ali H. Rajput
  • Sheri L. Harder
  • Helen NicholEmail author
Article

Abstract

Synchrotron rapid-scanning X-ray fluorescence (RS-XRF) is employed for the first time to simultaneously map iron, copper, and zinc in the normal cerebellum. The cerebellum is a major repository of metals that are essential to normal function. Therefore, mapping the normal metal distribution is an important first step towards understanding how multiple metals may induce oxidative damage, protein aggregation, and neurotoxicity leading to cerebellar degeneration in a wide range of diseases. We found that cerebellar white and grey matter could be sharply defined based upon the unique metal content of each region. The dentate nucleus was particularly metal-rich with copper localized to the periphery and iron and zinc abundant centrally. We discuss how RS-XRF metal mapping in the normal brain may yield important clues to the mechanisms of degeneration in the dentate nucleus.

Keywords

Iron Copper Zinc Cerebellum X-ray fluorescence Dentate nucleus 

Notes

Acknowledgments

We thank Martin George and Uwe Bergmann of SSRL for development of RS-XRF. B.P. is supported by a Dean’s scholarship from the Faculty of Graduate Studies, University of Saskatchewan. This work was supported by the Canadian Institutes for Health Research (ROP # 58337) to HN. Research on Parkinson’s Disease is supported by funding from the Regina Curling Classic, the Saskatchewan Parkinson’s Disease Foundation to A.R. Additional support came from a Saskatchewan Health Research Foundation Research Group Facilitation Grant, SHRF #1639. Human tissue was obtained from the NICHD Brain and Tissue Bank for Developmental Disorders under contracts N01-HD-4-3368 and N01-HD-$-3383. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program.

References

  1. 1.
    Klockgether T (2000) Recent advances in degenerative ataxias. Curr Opin Neurol 13(4):451–455 (Aug)PubMedCrossRefGoogle Scholar
  2. 2.
    Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89(1):634–639 (Jan)PubMedCrossRefGoogle Scholar
  3. 3.
    Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266(5184):458–461 (Oct 21)PubMedCrossRefGoogle Scholar
  4. 4.
    Corben LA, Georgiou-Karistianis N, Fahey MC, Storey E, Churchyard A, Horne M et al (2006) Towards an understanding of cognitive function in Friedreich ataxia. Brain Res Bull 70(3):197–202 (Jul 31)PubMedCrossRefGoogle Scholar
  5. 5.
    Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J (1999) Increased basal ganglia iron levels in Huntington disease. Arch Neurol 56(5):569–574 (May)PubMedCrossRefGoogle Scholar
  6. 6.
    Byers RK, Gilles FH, Fung C (1973) Huntington’s disease in children. Neuropathologic study of four cases. Neurology 23(6):561–569 (Jun)PubMedGoogle Scholar
  7. 7.
    Koeppen AH, Michael SC, Knutson MD, Haile DJ, Qian J, Levi S et al (2007) The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol 114(2):163–173 (Aug)PubMedCrossRefGoogle Scholar
  8. 8.
    Okamoto N, Wada S, Oga T, Kawabata Y, Baba Y, Habu D et al (1996) Hereditary ceruloplasmin deficiency with hemosiderosis. Hum Genet 97(6):755–758 (Jun)PubMedCrossRefGoogle Scholar
  9. 9.
    Starosta-Rubinstein S, Young AB, Kluin K, Hill G, Aisen AM, Gabrielsen T et al (1987) Clinical assessment of 31 patients with Wilson’s disease. Correlations with structural changes on magnetic resonance imaging. Arch Neurol 44(4):365–370 (Apr)PubMedGoogle Scholar
  10. 10.
    Williams RS, Marshall PC, Lott IT, Caviness VS Jr (1978) The cellular pathology of Menkes steely hair syndrome. Neurology 28(6):575–583 (Jun)PubMedGoogle Scholar
  11. 11.
    Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4(3–4):137–169PubMedCrossRefGoogle Scholar
  12. 12.
    Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:317–337PubMedCrossRefGoogle Scholar
  13. 13.
    Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873 (Nov)PubMedCrossRefGoogle Scholar
  14. 14.
    Gomori G (1936) Microtechnical demonstartion of iron: a criticism of its methods. Am J Pathol 12:655–663PubMedGoogle Scholar
  15. 15.
    Meguro R, Asano Y, Odagiri S, Li C, Iwatsuki H, Shoumura K (2007) Nonheme-iron histochemistry for light and electron microscopy: a historical, theoretical and technical review. Arch Histol Cytol 70(1):1–19 (Apr)PubMedCrossRefGoogle Scholar
  16. 16.
    Henwood A (2003) Current applications of orcein in histochemistry. A brief review with some new observations concerning influence of dye batch variation and aging of dye solutions on staining. Biotech Histochem 78(6):303–308 (Dec)PubMedCrossRefGoogle Scholar
  17. 17.
    Pilloni L, Lecca S, Van Eyken P, Flore C, Demelia L, Pilleri G et al (1998) Value of histochemical stains for copper in the diagnosis of Wilson’s disease. Histopathology 33(1):28–33 (Jul)PubMedCrossRefGoogle Scholar
  18. 18.
    Danscher G, Howell G, Perez-Clausell J, Hertel N (1985) The dithizone, Timm’s sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS. A proton activation (PIXE) analysis of carbon tetrachloride extracts from rat brains and spinal cords intravitally treated with dithizone. Histochemistry 83(5):419–422PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez-Garcia C, Varea E, Palop JJ, Nacher J, Ramirez C, Ponsoda X et al (2002) Cytochemical techniques for zinc and heavy metals localization in nerve cells. Microsc Res Tech 56(5):318–331 (Mar 1)PubMedCrossRefGoogle Scholar
  20. 20.
    McCrea RP, Harder SL, Martin M, Buist R, Nichol H (2008) A comparison of rapid-scanning X-ray fluorescence mapping and magnetic resonance imaging to localize brain iron distribution. Eur J Radiol 68(3):109–113 (Jul 15)CrossRefGoogle Scholar
  21. 21.
    Popescu BFG, George MJ, Bergmann U, Garachtchenko AV, Kelly ME, McCrea RPE et al (2008) Mapping metals in Parkinson’s and normal brain using rapid-scanning X-ray fluorescence. Phys Med Biol 54(2009):651–663. doi: 10.1088/0031-9155/54/3/012 Google Scholar
  22. 22.
    Hock A, Demmel U, Schicha H, Kasperek K, Feinendegen LE (1975) Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Brain 98(1):49–64 (Mar)PubMedCrossRefGoogle Scholar
  23. 23.
    Morris CM, Candy JM, Oakley AE, Bloxham CA, Edwardson JA (1992) Histochemical distribution of non-haem iron in the human brain. Acta Anat (Basel) 144(3):235–257CrossRefGoogle Scholar
  24. 24.
    Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P et al (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52(6):1830–1836 (Jun)PubMedCrossRefGoogle Scholar
  25. 25.
    Duflou H, Maenhaut W, De Reuck J (1989) Regional distribution of potassium, calcium, and six trace elements in normal human brain. Neurochem Res 14(11):1099–112 (Nov)PubMedCrossRefGoogle Scholar
  26. 26.
    Rajan MT, Jagannatha Rao KS, Mamatha BM, Rao RV, Shanmugavelu P, Menon RB et al (1997) Quantification of trace elements in normal human brain by inductively coupled plasma atomic emission spectrometry. J Neurol Sci 146(2):153–166 (Mar 10)PubMedCrossRefGoogle Scholar
  27. 27.
    Warren PJ, Earl CJ, Thompson RH (1960) The distribution of copper in human brain. Brain 83:709–717 (Dec)PubMedCrossRefGoogle Scholar
  28. 28.
    Chan-Palay V (1977) Cerebellar dentate nucleus: organization, cytology and transmitters. Springer, BerlinGoogle Scholar
  29. 29.
    Parent A (1996) Cerebellum. In: Coryell P (ed) Carpenter’s human neuroanatomy, 9th edn. Williams & Wilkins, Media, pp 583–629Google Scholar
  30. 30.
    Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75(6):367–390 (Apr)PubMedCrossRefGoogle Scholar
  31. 31.
    Haacke EM, Cheng NY, House MJ, Liu Q, Neelavalli J, Ogg RJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23(1):1–25 JanPubMedCrossRefGoogle Scholar
  32. 32.
    Prodan CI, Holland NR (2000) CNS demyelination from zinc toxicity? Neurology 54(8):1705–1706 (Apr 25)PubMedGoogle Scholar
  33. 33.
    Schiffer RB, McDermott MP, Copley C (2001) A multiple sclerosis cluster associated with a small, north-central Illinois community. Arch Environ Health 56(5):389–395 (Sep–Oct)PubMedCrossRefGoogle Scholar
  34. 34.
    O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275(33):25057–25060 (Aug 18)PubMedCrossRefGoogle Scholar
  35. 35.
    Gellein K, Flaten TP, Erikson KM, Aschner M, Syversen T (2008) Leaching of trace elements from biological tissue by formalin fixation. Biol Trace Elem Res 121(3):221–225 (Mar)PubMedCrossRefGoogle Scholar
  36. 36.
    Ortiz E, Pasquini JM, Thompson K, Felt B, Butkus G, Beard J et al (2004) Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res 77(5):681–689 (Sep 1)PubMedCrossRefGoogle Scholar
  37. 37.
    Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR (2008) Oligodendrocytes and myelination: the role of iron. Glia. (Oct 3; in press). doi: 10.1002/glia.20784
  38. 38.
    Kursula P, Merilainen G, Lehto VP, Heape AM (1999) The small myelin-associated glycoprotein is a zinc-binding protein. J Neurochem 73(5):2110–2118 (Nov)PubMedGoogle Scholar
  39. 39.
    Tsang D, Tsang YS, Ho WK, Wong RN (1997) Myelin basic protein is a zinc-binding protein in brain: possible role in myelin compaction. Neurochem Res 22(7):811–819 (Jul)PubMedCrossRefGoogle Scholar
  40. 40.
    Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17(2):83–93 (Jun)PubMedCrossRefGoogle Scholar
  41. 41.
    Bush VJ, Moyer TP, Batts KP, Parisi JE (1995) Essential and toxic element concentrations in fresh and formalin-fixed human autopsy tissues. Clin Chem 41(2):284–294 (Feb)PubMedGoogle Scholar
  42. 42.
    Chua-anusorn W, Webb J, Macey DJ, Pootrakul P, St Pierre TG (1997) The effect of histological processing on the form of iron in iron-loaded human tissues. Biochim Biophys Acta 1360(3):255–261 (May 24)PubMedGoogle Scholar
  43. 43.
    Brun A, Englund E (1986) A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol 19(3):253–262 (Mar)PubMedCrossRefGoogle Scholar
  44. 44.
    Faucheux BA, Bonnet AM, Agid Y, Hirsch EC (1999) Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet 353(9157):981–982 (Mar 20)PubMedCrossRefGoogle Scholar
  45. 45.
    Bartzokis G, Tishler TA, Lu PH, Villablanca P, Altshuler LL, Carter M et al (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28(3):414–423 (Mar)PubMedCrossRefGoogle Scholar
  46. 46.
    Ponka P (1999) Cellular iron metabolism. Kidney Int Suppl 69:S2–S11 (Mar)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bogdan F. Gh. Popescu
    • 1
  • Christopher A. Robinson
    • 2
  • Alex Rajput
    • 3
  • Ali H. Rajput
    • 3
  • Sheri L. Harder
    • 4
  • Helen Nichol
    • 1
    Email author
  1. 1.Department of Anatomy and Cell Biology, College of MedicineUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of Pathology and Laboratory Medicine, Saskatoon Health Region/College of MedicineUniversity of SaskatchewanSaskatoonCanada
  3. 3.Division of Neurology, College of MedicineUniversity of SaskatchewanSaskatoonCanada
  4. 4.Department of RadiologyLoma Linda University Medical CenterLoma LindaUSA

Personalised recommendations