Advertisement

The Cerebellum

, Volume 7, Issue 3, pp 385–391 | Cite as

Functional Crosstalk Between Cell-Surface and Intracellular Channels Mediated by Junctophilins Essential for Neuronal Functions

  • Sho Kakizawa
  • Shigeki Moriguchi
  • Atsushi Ikeda
  • Masamitsu Iino
  • Hiroshi TakeshimaEmail author
Article

Abstract

Junctophilins (JPs) contribute to the formation of junctional membrane complexes between the plasma membrane and the endoplasmic/sarcoplasmic reticulum, and provide a structural platform for channel communication during excitation–contraction coupling in muscle cells. In the brain, two neuronal JP subtypes are widely expressed in neurons. Recent studies have defined the essential role of neural JPs in the communication between cell-surface and intracellular channels, which modulates the excitability and synaptic plasticity of neurons in the cerebellum and hippocampus.

Keywords

Junctophilin Ryanodine receptor Ca2+ release Afterhyperpolarization Small-conductance Ca2+-activated K+ channel Long-term depression Purkinje cell 

References

  1. 1.
    Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636PubMedGoogle Scholar
  2. 2.
    Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26PubMedCrossRefGoogle Scholar
  3. 3.
    Flucher BE (1992) Structural-analysis of muscle development—transverse tubules, sarcoplasmic-reticulum, and the triad. Dev Biol 154:245–260PubMedCrossRefGoogle Scholar
  4. 4.
    Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation–contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary-DNA. Nature 336:134–139PubMedCrossRefGoogle Scholar
  5. 5.
    Takeshima H, Iino M, Takekura H, Nishi M, Kuno J, Minowa O et al (1994) Excitation–contraction uncoupling and muscular degeneration in mice lacking functional skeletal-muscle ryanodine-receptor gene. Nature 369:556–559PubMedCrossRefGoogle Scholar
  6. 6.
    Endo M (1985) Calcium release from sarcoplasmic-reticulum. Curr Top Membr Transp 25:181–230Google Scholar
  7. 7.
    Takekura H, Takeshima H, Nishimura S, Takahashi M, Tanabe T, Flockerzi V et al (1995) Coexpression in Cho cells of 2 muscle proteins involved in excitation–contraction coupling. J Muscle Res Cell Motil 16:465–480PubMedCrossRefGoogle Scholar
  8. 8.
    Suda N, Franzius D, Fleig A, Nishimura S, Bodding M, Hoth M et al (1997) Ca2+-induced Ca2+ release in Chinese hamster ovary (CHO) cells co-expressing dihydropyridine and ryanodine receptors. J Gen Physiol 109:619–631PubMedCrossRefGoogle Scholar
  9. 9.
    Franzini-Armstrong C, Pinconraymond M, Rieger F (1991) Muscle-fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. Dev Biol 146:364–376PubMedCrossRefGoogle Scholar
  10. 10.
    Ikemoto T, Komazaki S, Takeshima H, Nishi M, Noda T, Iino M et al (1997) Functional and morphological features of skeletal muscle from mutant mice lacking both type 1 and type 3 ryanodine receptors. J Physiol-Lond 501:305–312PubMedCrossRefGoogle Scholar
  11. 11.
    Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22PubMedCrossRefGoogle Scholar
  12. 12.
    Ito K, Komazaki S, Sasamoto K, Yoshida M, Nishi M, Kitamura K et al (2001) Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol 154:1059–1067PubMedCrossRefGoogle Scholar
  13. 13.
    Nishi M, Sakagami H, Komazaki S, Kondo H, Takeshima H (2003) Coexpression of junctophilin type 3 and type 4 in brain. Mol Brain Res 118:102–110PubMedCrossRefGoogle Scholar
  14. 14.
    Nishi M, Hashimoto K, Kuriyama K, Komazaki S, Kano M, Shibata S et al (2002) Motor discoordination in mutant mice lacking junctophilin type 3. Biochem Biophys Res Commun 292:318–324PubMedCrossRefGoogle Scholar
  15. 15.
    Moriguchi S, Nishi M, Komazaki S, Sakagami H, Miyazaki T, Masumiya H et al (2006) Functional uncoupling between Ca2+ release and afterhyperpolarization in mutant hippocampal neurons lacking junctophilins. Proc Natl Acad Sci USA 103:10811–10816PubMedCrossRefGoogle Scholar
  16. 16.
    Kakizawa S, Kishimoto Y, Hashimoto K, Miyazaki T, Furutani K, Shimizu H et al (2007) Junctophilin-mediated channel crosstalk essential for cerebellar synaptic plasticity. EMBO J 26:1924–1933PubMedCrossRefGoogle Scholar
  17. 17.
    Konnerth A, Llano I, Armstrong CM (1990) Synaptic currents in cerebellar Purkinje-cells. Proc Natl Acad Sci USA 87:2662–2665PubMedCrossRefGoogle Scholar
  18. 18.
    Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303PubMedCrossRefGoogle Scholar
  19. 19.
    Kano M, Hashimoto K, Watanabe M, Kurihara H, Offermanns S, Jiang HP et al (1998) Phospholipase C beta 4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum. Proc Natl Acad Sci USA 95:15724–15729PubMedCrossRefGoogle Scholar
  20. 20.
    Kakizawa S, Yamasaki M, Watanabe M, Kano M (2000) Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 20:4954–4961PubMedGoogle Scholar
  21. 21.
    Kakizawa S, Yamada K, Iino M, Watanabe M, Kano M (2003) Effects of insulin-like growth factor I on climbing fibre synapse elimination during cerebellar development. Eur J Neurosci 17:545–554PubMedCrossRefGoogle Scholar
  22. 22.
    Kakizawa S, Miyazaki T, Yanagihara D, Iino M, Watanabe M, Kano M (2005) Maintenance of presynaptic function by AMPA receptor-mediated excitatory postsynaptic activity in adult brain. Proc Natl Acad Sci USA 102:19180–19185PubMedCrossRefGoogle Scholar
  23. 23.
    Hashimoto K, Kano M (2005) Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum. Neurosci Res 53:221–228PubMedCrossRefGoogle Scholar
  24. 24.
    Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C (2002) The making of a complex spike: ionic composition and plasticity. Ann NY Acad Sci 978(1):359–390PubMedCrossRefGoogle Scholar
  25. 25.
    Pedarzani P, Mosbacher J, Rivard A, Cingolani LA, Oliver D, Stocker M et al (2001) Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J Biol Chem 276:9762–9769PubMedCrossRefGoogle Scholar
  26. 26.
    Knaus HG, Schwarzer C, Koch ROA, Eberhart A, Kaczorowski GJ, Glossmann H et al (1996) Distribution of high-conductance Ca2+-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosc 16:955–963Google Scholar
  27. 27.
    Womack MD, Khodakhah K (2002) Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons. Eur J Neurosci 16:1214–1222PubMedCrossRefGoogle Scholar
  28. 28.
    Edgerton JR, Reinhart PH (2003) Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol-Lond 548:53–69PubMedCrossRefGoogle Scholar
  29. 29.
    Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J et al (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714PubMedCrossRefGoogle Scholar
  30. 30.
    Sailer CA, Kaufmann WA, Marksteiner J, Knaus HG (2004) Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol Cell Neurosci 26:458–469PubMedCrossRefGoogle Scholar
  31. 31.
    Bond CT, Herson PS, Strassmaier T, Hammond R, Stackman R, Maylie J et al (2004) Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J Neurosci 24:5301–5306PubMedCrossRefGoogle Scholar
  32. 32.
    Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Archiv European Journal of Physiology 441:544–550PubMedCrossRefGoogle Scholar
  33. 33.
    Linden DJ, Connor JA (1995) Long-term synaptic depression. Annu Rev Neurosci 18:319–357PubMedCrossRefGoogle Scholar
  34. 34.
    Weber JT, De Zeeuw CI, Linden DJ, Hansel C (2003) Long-term depression of climbing fiber-evoked calcium transients in Purkinje cell dendrites. Proc Natl Acad Sci USA 100:2878–2883PubMedCrossRefGoogle Scholar
  35. 35.
    Coesmans M, Weber JT, De Zeeuw CI, Hansel C (2004) Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 44:691–700PubMedCrossRefGoogle Scholar
  36. 36.
    Ikeda A, Miyazaki T, Kakizawa S, Okuno Y, Tsuchiya S, Myomoto A et al (2007) Abnormal features in mutant cerebellar Purkinje cells lacking junctophilins. Biochem Biophys Res Commun 363:835–839PubMedCrossRefGoogle Scholar
  37. 37.
    Verkhratsky A (2002) The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 32:393–404PubMedCrossRefGoogle Scholar
  38. 38.
    Rose CR, Konnerth A (2001) Stores not just for storage: intracellular calcium release and synaptic plasticity. Neuron 31:519–522PubMedCrossRefGoogle Scholar
  39. 39.
    Bardo S, Cavazzini MG, Emptage N (2006) The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons. Trends Pharmacol Sci 27:78–84PubMedCrossRefGoogle Scholar
  40. 40.
    Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4, 5-trisphosphate in Purkinje cell dendrites. Nature 396:753–756PubMedCrossRefGoogle Scholar
  41. 41.
    Takechi H, Eilers J, Konnerth A (1998) A new class of synaptic response involving calcium release in dendritic spines. Nature 396:757–760PubMedCrossRefGoogle Scholar
  42. 42.
    Kano M, Garaschuk O, Verkhratsky A, Konnerth A (1995) Ryanodine receptor-mediated intracellular calcium-release in rat cerebellar Purkinje neurons. J Physiol-Lond 487:1–16PubMedGoogle Scholar
  43. 43.
    Garaschuk O, Yaari Y, Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol-Lond 502:13–30PubMedCrossRefGoogle Scholar
  44. 44.
    Llano I, Dipolo R, Marty A (1994) Calcium-induced calcium-release in cerebellar Purkinje-cells. Neuron 12:663–673PubMedCrossRefGoogle Scholar
  45. 45.
    Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279PubMedCrossRefGoogle Scholar
  46. 46.
    Furuichi T, Furutama D, Hakamata Y, Nakai J, Takeshima H, Mikoshiba K (1994) Multiple types of ryanodine receptor Ca2+ release channels are differentially expressed in rabbit brain. J Neurosci 14:4794–4805PubMedGoogle Scholar
  47. 47.
    Furuichi T, Simonchazottes D, Fujino I, Yamada N, Hasegawa M, Miyawaki A et al (1993) Widespread expression of inositol 1,4,5-trisphosphate receptor type-1 gene (Insp3r1) in the mouse central-nervous-system. Recept Channels 1:11–24PubMedGoogle Scholar
  48. 48.
    Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18:5366–5373PubMedGoogle Scholar
  49. 49.
    Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI et al (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233–244PubMedCrossRefGoogle Scholar
  50. 50.
    Furutani K, Okubo Y, Kakizawa S, Iino M (2006) Postsynaptic inositol 1,4,5-trisphosphate signaling maintains presynaptic function of parallel fiber-Purkinje cell synapses via BDNF. Proc Natl Acad Sci USA 103:8528–8533PubMedCrossRefGoogle Scholar
  51. 51.
    Kohda K, Inoue T, Mikoshiba K (1995) Ca2+ release from Ca2+ stores, particularly from ryanodine-sensitive Ca2+ stores, is required for the induction of Ltd in cultured cerebellar Purkinje-cells. J Neurophysiol 74:2184–2188PubMedGoogle Scholar
  52. 52.
    Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth-muscle cells of the guinea-pig taenia ceci. J Gen Physiol 95:1103–1122PubMedCrossRefGoogle Scholar
  53. 53.
    Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3-gated and calcium-gated channels from endoplasmic-reticulum of cerebellum. Nature 351:751–754PubMedCrossRefGoogle Scholar
  54. 54.
    Wang SSH, Denk W, Hausser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266–1273PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sho Kakizawa
    • 1
    • 2
  • Shigeki Moriguchi
    • 3
  • Atsushi Ikeda
    • 4
  • Masamitsu Iino
    • 1
  • Hiroshi Takeshima
    • 4
    Email author
  1. 1.Department of Pharmacology, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Department of Anatomy and Neurobiology, Graduate School of MedicineNagasaki UniversityNagasakiJapan
  3. 3.Department of Pharmacology, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  4. 4.Department of Biological ChemistryKyoto University Graduate School of Pharmaceutical SciencesKyotoJapan

Personalised recommendations