The Cerebellum

, Volume 7, Issue 2, pp 138–149 | Cite as

Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration



Spinocerebellar ataxia type 7 (SCA7) is unique among CAG/polyglutamine (polyQ) repeat diseases due to dramatic intergenerational instability in repeat length and an associated cone-rod dystrophy retinal degeneration phenotype. SCA7 is caused by a polyQ expansion in the protein ataxin-7. Like other neurodegenerative diseases caused by polyQ expansion mutations, the spectrum of clinical severity and disease progression worsens with increasing polyQ length. Several potential mechanisms for the molecular pathogenesis of polyQ-expanded ataxin-7 have been suggested. These include, but are not limited to, alteration of endogenous ataxin-7 function, abnormal processing and stability of polyQ ataxin-7, and alteration of transcriptional regulation via interaction of polyQ-expanded ataxin-7 with other transcriptional regulators. Ataxin-7’s normal function as a transcription factor may contribute to the selective vulnerability of specific cellular populations in SCA7, and the resolution of the mechanistic basis of this pathogenic cascade is a major focus of SCA7 disease research. PolyQ-expanded ataxin-7 can cause non-cell autonomous neurodegeneration in cerebellar Purkinje cells. Advances in understanding SCA7’s molecular basis have led to important insights into cell-type specific neurodegeneration. We expect that further study of ataxin-7 normal function, insights into the molecular basis of SCA7 neurodegeneration, and the development of therapeutic interventions for SCA7 will greatly influence related endeavors directed at other CAG/polyQ repeat diseases.

Key words

Polyglutamine ataxia SCA7 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe T, Tsuda T, Yoshida M, Wada Y, Kano T, Itoyama Y, et al. Macular degeneration associated with aberrant expansion of trinucleotide repeat of the SCA7 gene in 2 Japanese families. Arch Ophthalmol. 2000;118:1415–21.PubMedGoogle Scholar
  2. 2.
    Bryer A, Krause A, Bill P, Davids V, Bryant D, Butler J, et al. The hereditary adult-onset ataxias in South Africa. J Neurol Sci. 2003;216:47–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Gu W, Wang Y, Liu X, Zhou B, Zhou Y, Wang G. Molecular and clinical study of spinocerebellar ataxia type 7 in Chinese kindreds. Arch Neurol. 2000;57:1513–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Jardim LB, Silveira I, Pereira ML, Ferro A, Alonso I, do Ceu Moreira M, et al. A survey of spinocerebellar ataxia in South Brazil – 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol. 2001;248:870–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Johansson J, Forsgren L, Sandgren O, Brice A, Holmgren G, Holmberg M. Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: Effect of CAG repeat length on the clinical manifestation. Hum Mol Genet. 1998;7:171–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ, et al. Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet. 2000;95:351–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, et al. Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature. 1995;378:403–6.PubMedCrossRefGoogle Scholar
  8. 8.
    David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997;17:65–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Garden GA, Truant R, Ellerby LM, La Spada AR. Spinocerebellar ataxia type 7: Clinical features to cellular pathogenesis. Genetic instabilities and hereditary neurological diseases. San Diego, CA: Academic Press. 1996.Google Scholar
  10. 10.
    Benomar A, Krols L, Stevanin G, Cancel G, LeGuern E, David G, et al. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1. Nat Genet. 1995;10:84–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Holmberg M, Johansson J, Forsgren L, Heijbel J, Sandgren O, Holmgren G. Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12-p21.1. Hum Mol Genet. 1995;4:1441–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Benton CS, de Silva R, Rutledge SL, Bohlega S, Ashizawa T, Zoghbi HY. Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology. 1998;51:1081–6.PubMedGoogle Scholar
  13. 13.
    David G, Durr A, Stevanin G, Cancel G, Abbas N, Benomar A, et al. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet. 1998;7:165–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1:1151–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Giunti P, Stevanin G, Worth PF, David G, Brice A, Wood NW. Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet. 1999;64:1594–603.PubMedCrossRefGoogle Scholar
  16. 16.
    Bang OY, Huh K, Lee PH, Kim HJ. Clinical and neuroradiological features of patients with spinocerebellar ataxias from Korean kindreds. Arch Neurol. 2003;60:1566–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Bang OY, Lee PH, Kim SY, Kim HJ, Huh K. Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry. 2004;75:1452–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Martin JJ, Van Regemorter N, Krols L, Brucher JM, de Barsy T, Szliwowski H, et al. On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol (Berl). 1994;88:277–86.CrossRefGoogle Scholar
  19. 19.
    Michalik A, Martin JJ, Van Broeckhoven C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet. 2004;12:2–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Martin J, Van Regemorter N, Del-Favero J, Lofgren A, Van Broeckhoven C. Spinocerebellar ataxia type 7 (SCA7) - correlations between phenotype and genotype in one large Belgian family. J Neurol Sci. 1999;168:37–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Holmberg M, Duyckaerts C, Durr A, Cancel G, Gourfinkel-An I, Damier P, et al. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet. 1998;7:913–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Takahashi J, Fujigasaki H, Zander C, El Hachimi KH, Stevanin G, Durr A, et al. Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content. Brain. 2002;125:1534–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Einum DD, Townsend JJ, Ptacek LJ, Fu YH. Ataxin-7 expression analysis in controls and spinocerebellar ataxia type 7 patients. Neurogenetics. 2001;3:83–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Garden GA, Libby RT, Fu YH, Kinoshita Y, Huang J, Possin DE, et al. Polyglutamine-expanded ataxin-7 promotes non-cell-autonomous purkinje cell degeneration and displays proteolytic cleavage in ataxic transgenic mice. J Neurosci. 2002;22:4897–905.PubMedGoogle Scholar
  25. 25.
    La Spada AR, Fu Y, Sopher BL, Libby RT, Wang X, Li LY, et al. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron. 2001;31:913–27.PubMedCrossRefGoogle Scholar
  26. 26.
    Yvert G, Lindenberg KS, Devys D, Helmlinger D, Landwehrmeyer GB, Mandel JL. SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. Hum Mol Genet. 2001;10:1679–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Lindenberg KS, Yvert G, Muller K, Landwehrmeyer GB. Expression analysis of ataxin-7 mRNA and protein in human brain: Evidence for a widespread distribution and focal protein accumulation. Brain Pathol. 2000;10:385–94.PubMedGoogle Scholar
  28. 28.
    Perutz MF, Johnson T, Suzuki M, Finch JT. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA. 1994;91:5355–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90:537–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 1997;19:333–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 2004;431:805–10.PubMedCrossRefGoogle Scholar
  32. 32.
    Sanchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature. 2003;421:373–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Poirier MA, Li H, Macosko J, Cai S, Amzel M, Ross CA. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J Biol Chem. 2002;277:41032–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Li M, Miwa S, Kobayashi Y, Merry DE, Yamamoto M, Tanaka F, et al. Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol. 1998;44:249–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, et al. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet. 1999;8:397–407.PubMedCrossRefGoogle Scholar
  36. 36.
    Schilling G, Wood JD, Duan K, Slunt HH, Gonzales V, Yamada M, et al. Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron. 1999;24:275–86.PubMedCrossRefGoogle Scholar
  37. 37.
    Gafni J, Ellerby LM. Calpain activation in Huntington’s disease. J Neurosci. 2002;22:4842–9.PubMedGoogle Scholar
  38. 38.
    Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, et al. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet. 1996;13:442–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, et al. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci USA. 2001;98:12784–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA, Singaraja R, et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem. 1998;273:9158–67.PubMedCrossRefGoogle Scholar
  41. 41.
    Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, et al. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem. 2000;275:19831–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Ellerby LM, Hackam AS, Propp SS, Ellerby HM, Rabizadeh S, Cashman NR, et al. Kennedy’s disease: caspase cleavage of the androgen receptor is a crucial event in cytotoxicity. J Neurochem. 1999;72:185–95.PubMedCrossRefGoogle Scholar
  43. 43.
    Young JE, Gouw LG, Propp SS, Lin A, Hermel E, Logvinova A, et al. Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcriptional dysregulation. J Biol Chem. 2007; in press.Google Scholar
  44. 44.
    Taylor J, Grote SK, Xia J, Vandelft M, Graczyk J, Ellerby LM, et al. Ataxin-7 can export from the nucleus via a conserved exportin-dependent signal. J Biol Chem. 2006;281:2730–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Bowman AB, Yoo SY, Dantuma NP, Zoghbi HY. Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation. Hum Mol Genet. 2005;14:679–91.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang HL, Yeh TH, Chou AH, Kuo YL, Luo LJ, He CY, et al. Polyglutamine-expanded ataxin-7 activates mitochondrial apoptotic pathway of cerebellar neurons by upregulating Bax and downregulating Bcl-x(L). Cell Signal. 2006;18:541–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Custer SK, Garden GA, Gill N, Rueb U, Libby RT, Schultz C, et al. Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat Neurosci. 2006;9:1302–11.PubMedCrossRefGoogle Scholar
  48. 48.
    Yoo SY, Pennesi ME, Weeber EJ, Xu B, Atkinson R, Chen S, et al. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron. 2003;37:383–401.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen S, Peng GH, Wang X, Smith AC, Grote SK, Sopher BL, et al. Interference of Crx-dependent transcription by ataxin-7 involves interaction between the glutamine regions and requires the ataxin-7 carboxy-terminal region for nuclear localization. Hum Mol Genet. 2004;13:53–67.PubMedCrossRefGoogle Scholar
  50. 50.
    Kaytor MD, Duvick LA, Skinner PJ, Koob MD, Ranum LP, Orr HT. Nuclear localization of the spinocerebellar ataxia type 7 protein, ataxin-7. Hum Mol Genet. 1999;8:1657–64.PubMedCrossRefGoogle Scholar
  51. 51.
    Cancel G, Duyckaerts C, Holmberg M, Zander C, Yvert G, Lebre AS, et al. Distribution of ataxin-7 in normal human brain and retina. Brain. 2000;123(Pt 12):2519–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Blazek E, Mittler G, Meisterernst M. The mediator of RNA polymerase II. Chromosoma. 2005;113:399–408.PubMedCrossRefGoogle Scholar
  53. 53.
    Conaway JW, Florens L, Sato S, Tomomori-Sato C, Parmely TJ, Yao T, et al. The mammalian Mediator complex. FEBS Lett. 2005;579:904–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Timmers HT, Tora L. SAGA unveiled. Trends Biochem Sci. 2005;30:7–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Sanders SL, Jennings J, Canutescu A, Link AJ, Weil PA. Proteomics of the eukaryotic transcription machinery: Identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol. 2002;22:4723–38.PubMedCrossRefGoogle Scholar
  56. 56.
    McMahon SJ, Pray-Grant MG, Schieltz D, Yates JR, 3rd, Grant PA. Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc Natl Acad Sci USA. 2005;102:8478–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, et al. Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet. 2004;13:1257–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, et al. Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci USA. 2005;102:8472–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol. 2001;21:6782–95.PubMedCrossRefGoogle Scholar
  60. 60.
    Helmlinger D, Hardy S, Abou-Sleymane G, Eberlin A, Bowman AB, Gansmuller A, et al. Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. PLoS Biol. 2006;4:e67.PubMedCrossRefGoogle Scholar
  61. 61.
    Strom AL, Forsgren L, Holmberg M. A role for both wildtype and expanded ataxin-7 in transcriptional regulation. Neurobiol Dis. 2005;20:646–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science. 2002;296:2238–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Nucifora FC, Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science. 2001;291:2423–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet. 2003;35:76–83.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang S, Xu L, Lee J, Xu T. Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes. Cell. 2002;108:45–56.PubMedCrossRefGoogle Scholar
  66. 66.
    Okazawa H, Rich T, Chang A, Lin X, Waragai M, Kajikawa M, et al. Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death. Neuron. 2002;34:701–13.PubMedCrossRefGoogle Scholar
  67. 67.
    Tsai CC, Kao HY, Mitzutani A, Banayo E, Rajan H, McKeown M, et al. Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc Natl Acad Sci USA. 2004;101:4047–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Li F, Macfarlan T, Pittman RN, Chakravarti D. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J Biol Chem. 2002;277:45004–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Evert BO, Araujo J, Vieira-Saecker AM, de Vos RA, Harendza S, Klockgether T, et al. Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation. J Neurosci. 2006;26:11474–86.PubMedCrossRefGoogle Scholar
  70. 70.
    Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci. 2000;3:157–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, Menon AS, et al. Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet. 2000;9:1259–71.PubMedCrossRefGoogle Scholar
  72. 72.
    La Spada AR, Taylor JP. Polyglutamines placed into context. Neuron. 2003;38:681–4.PubMedCrossRefGoogle Scholar
  73. 73.
    Hughes RE, Lo RS, Davis C, Strand AD, Neal CL, Olson JM, et al. Altered transcription in yeast expressing expanded polyglutamine. Proc Natl Acad Sci USA. 2001;98:13201–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Yvert G, Lindenberg KS, Picaud S, Landwehrmeyer GB, Sahel JA, Mandel JL. Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum Mol Genet. 2000;9:2491–506.PubMedCrossRefGoogle Scholar
  75. 75.
    Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. Embo J. 1996;15:1255–64.PubMedGoogle Scholar
  76. 76.
    Koyano S, Iwabuchi K, Yagishita S, Kuroiwa Y, Uchihara T. Paradoxical absence of nuclear inclusion in cerebellar Purkinje cells of hereditary ataxias linked to CAG expansion. J Neurol Neurosurg Psychiatry. 2002;73:450–2.PubMedCrossRefGoogle Scholar
  77. 77.
    Strahlendorf JC, Brandon T, Miles R, Strahlendorf HK. AMPA receptor-mediated alterations of intracellular calcium homeostasis in rat cerebellar Purkinje cells in vitro: Correlates to dark cell degeneration. Neurochem Res. 1998;23:1355–62.PubMedCrossRefGoogle Scholar
  78. 78.
    Brorson JR, Manzolillo PA, Gibbons SJ, Miller RJ. AMPA receptor desensitization predicts the selective vulnerability of cerebellar Purkinje cells to excitotoxicity. J Neurosci. 1995;15:4515–24.PubMedGoogle Scholar
  79. 79.
    Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433:73–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med. 2004;10:816–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Mount HT, Dean DO, Alberch J, Dreyfus CF, Black IB. Glial cell line-derived neurotrophic factor promotes the survival and morphologic differentiation of Purkinje cells. Proc Natl Acad Sci USA. 1995;92:9092–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Springer JE, Mu X, Bergmann LW, Trojanowski JQ. Expression of GDNF mRNA in rat and human nervous tissue. Exp Neurol. 1994;127:167–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Alberch J, Perez-Navarro E, Canals JM. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington’s disease. Brain Res Bull. 2002;57:817–22.PubMedCrossRefGoogle Scholar
  84. 84.
    Bonde C, Kristensen BW, Blaabjerg M, Johansen TE, Zimmer J, Meyer M. GDNF and neublastin protect against NMDA-induced excitotoxicity in hippocampal slice cultures. Neuroreport. 2000;11:4069–73.PubMedCrossRefGoogle Scholar
  85. 85.
    Cheng H, Fu YS, Guo JW. Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus. Hippocampus. 2004;14:77–86.PubMedCrossRefGoogle Scholar
  86. 86.
    Gratacos E, Perez-Navarro E, Tolosa E, Arenas E, Alberch J. Neuroprotection of striatal neurons against kainate excitotoxicity by neurotrophins and GDNF family members. J Neurochem. 2001;78:1287–96.PubMedCrossRefGoogle Scholar
  87. 87.
    Tolbert DL, Clark BR. GDNF and IGF-I trophic factors delay hereditary Purkinje cell degeneration and the progression of gait ataxia. Exp Neurol. 2003;183:205–19.PubMedCrossRefGoogle Scholar
  88. 88.
    Tolbert DL, Bradley MW, Tolod EG, Torres-Aleman I, Clark BR. Chronic intraventricular infusion of glial cell linederived neurotrophic factor (GDNF) rescues some cerebellar Purkinje cells from heredodegeneration. Exp Neurol. 2001;170:375–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Nieto-Bona MP, Garcia-Segura LM, Torres-Aleman I. Orthograde transport and release of insulin-like growth factor I from the inferior olive to the cerebellum. J Neurosci Res. 1993;36:520–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Aguado F, Sanchez-Franco F, Cacidedo L, Fernandez T, Rodrigo J, Martinez-Murillo R. Subcellular localization of insulin-like growth factor I (IGF-I) in Purkinje cells of the adult rat: An immunocytochemical study. Neurosci Lett. 1992;135:171–4.PubMedCrossRefGoogle Scholar
  91. 91.
    Digicaylioglu M, Garden G, Timberlake S, Fletcher L, Lipton SA. Acute neuroprotective synergy of erythropoietin and insulin-like growth factor I. Proc Natl Acad Sci USA. 2004;101:9855–60.PubMedCrossRefGoogle Scholar
  92. 92.
    Escartin C, Boyer F, Bemelmans AP, Hantraye P, Brouillet E. Insulin growth factor-1 protects against excitotoxicity in the rat striatum. Neuroreport. 2004;15:2251–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science. 2003;301:839–42.PubMedCrossRefGoogle Scholar
  94. 94.
    Nakao N, Odin P, Lindvall O, Brundin P. Differential trophic effects of basic fibroblast growth factor, insulin-like growth factor-1, and neurotrophin-3 on striatal neurons in culture. Exp Neurol. 1996;138:144–57.PubMedCrossRefGoogle Scholar
  95. 95.
    Gamboa C, Ortega A. Insulin-like growth factor-1 increases activity and surface levels of the GLAST subtype of glutamate transporter. Neurochem Int. 2002;40:397–403.PubMedCrossRefGoogle Scholar
  96. 96.
    Fernandez AM, Gonzalez de la Vega AG, Planas B, Torres-Aleman I. Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured livocerebellar pathway. Eur J Neurosci. 1999;11:2019–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Laboratory MedicineUniversity of WashingtonSeattleUSA
  3. 3.Department of MedicineUniversity of WashingtonSeattleUSA
  4. 4.Center for Neurogenetics and NeurotherapeuticsUniversity of WashingtonSeattleUSA
  5. 5.Department of Laboratory MedicineUniversity of Washington Medical CenterSeattleUSA

Personalised recommendations