The Cerebellum

, 7:198 | Cite as

Electrophysiology in spinocerebellar ataxias: Spread of disease and characteristic findings

  • Ludger Schöls
  • Christoph Linnemann
  • Christoph Globas
Original Article

Abstract

Spinocerebellar ataxias (SCAs) comprise a clinically and genetically heterogeneous group of autosomal dominantly inherited neurodegenerative disorders affecting the cerebellum and to variable degrees further parts of the nervous system. Electrophysiology is a potent tool to prove impairment of multiple neuronal systems and fibre tracts and even to decipher subclinical affection. Electrooculography, evoked potentials, nerve conduction studies and polysomnography are especially helpful in the setting of SCAs. Severely slowed saccades are a hallmark of SCA2. Vertical nystagmus occurs most frequently in SCA3 and SCA6. Visual potentials recede especially in SCA7. Substantially prolonged central motor conduction times in motor-evoked potentials occur frequently in SCA1 even in patients without clinical signs of pyramidal affection. Thus, electrophysiological analyses may help to predict the SCA genotype and direct molecular genetic diagnostics. Polymsomnography is a helpful tool in the analysis of sleep disorders and frequently helps to decipher treatable causes like periodic leg movement in sleep and REM sleep behaviour disorder in SCAs. Nerve conduction studies reveal sensory neuropathy in all common SCA subtypes, but to variable degrees. Age rather than CAG repeat length appears to be the most important determinant for neuropathy and makes sensory nerve action potentials a potential progression marker in SCA.

References

  1. 1.
    Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14.PubMedGoogle Scholar
  3. 3.
    Klockgether T, Ludtke R, Kramer B, et al. The natural history of degenerative ataxia: A retrospective study in 466 patients. Brain. 1998;121(Pt 4):589–600.PubMedCrossRefGoogle Scholar
  4. 4.
    Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRefGoogle Scholar
  5. 5.
    Rasmussen A, Matsuura T, Ruano L, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol. 2001;50:234–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Buttner N, Geschwind D, Jen JC, et al. Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol. 1998;55:1353–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Burk K, Fetter M, Abele M, et al. Autosomal dominant cerebellar ataxia type I: Oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol. 1999;246:789–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Giunti P, Stevanin G, Worth PF, et al. Molecular and clinical study of 18 families with ADCA type II: Evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet. 1999;64:1594–603.PubMedCrossRefGoogle Scholar
  9. 9.
    Oh AK, Jacobson KM, Jen JC, Baloh RW. Slowing of voluntary and involuntary saccades: An early sign in spinocerebellar ataxia type 7. Ann Neurol. 2001;49:801–04.PubMedCrossRefGoogle Scholar
  10. 10.
    Velazquez-Perez L, Seifried C, Santos-Falcon N, et al. Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol. 2004;56:444–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Gomez CM, Thompson RM, Gammack JT, et al. Spinocerebellar ataxia type 6: Gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42:933–50.PubMedCrossRefGoogle Scholar
  12. 12.
    David G, Durr A, Stevanin G, et al. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet. 1998;7:165–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Abele M, Burk K, Andres F, et al. Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain. 1997;120(Pt 12):2141–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Schols L, Amoiridis G, Buttner T, et al. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42:924–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Schols L, Amoiridis G, Langkafel M, Schols S, Przuntek H. Motor evoked potentials in the spinocerebellar ataxias type 1 and type 3. Muscle Nerve. 1997;20:226–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwenkreis P, Tegenthoff M, Witscher K, et al. Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain. 2002;125(Pt 2):301–09.PubMedCrossRefGoogle Scholar
  17. 17.
    Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: A review. Cerebellum. 2005;4:218–23.PubMedCrossRefGoogle Scholar
  18. 18.
    van de Warrenburg BP, Notermans NC, Schelhaas HJ, et al. Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol. 2004;61:257–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Flanigan K, Gardner K, Alderson K, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): Clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet. 1996;59:392–9.PubMedGoogle Scholar
  20. 20.
    Brkanac Z, Fernandez M, Matsushita M, et al. Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): Linkage to chromosome 7q22-q32. Am J Med Genet. 2002;114:450–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Stevanin G, Bouslam N, Thobois S, et al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol. 2004;55:97–104.PubMedCrossRefGoogle Scholar
  22. 22.
    Klockgether T, Schols L, Abele M, et al. Age related axonal neuropathy in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). J Neurol Neurosurg Psychiatry. 1999;66:222–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Durr A, Stevanin G, Cancel G, et al. Spinocerebellar ataxia 3 and Machado-Joseph disease: Clinical, molecular, and neuropathological features. Ann Neurol. 1996;39:490–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol (Berl). 1999;97:306–10.CrossRefGoogle Scholar
  25. 25.
    Schols L, Haan J, Riess O, Amoiridis G, Przuntek H. Sleep disturbance in spinocerebellar ataxias: Is the SCA3 mutation a cause of restless legs syndrome? Neurology. 1998;51:1603–07.PubMedGoogle Scholar
  26. 26.
    Abele M, Burk K, Laccone F, Dichgans J, Klockgether T. Restless legs syndrome in spinocerebellar ataxia types 1, 2, and 3. J Neurol. 2001;248:311–14.PubMedCrossRefGoogle Scholar
  27. 27.
    Tuin I, Voss U, Kang JS, et al. Stages of sleep pathology in spinocerebellar ataxia type 2 (SCA2). Neurology. 2006;67:1966–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Boesch SM, Frauscher B, Brandauer E, et al. Restless legs syndrome and motor activity during sleep in spinocerebellar ataxia type 6. Sleep Med. 2006;7:529–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Boesch SM, Frauscher B, Brandauer E, et al. Disturbance of rapid eye movement sleep in spinocerebellar ataxia type 2. Mov Disord. 2006;21:1751–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Schols L, Kruger R, Amoiridis G, et al. Spinocerebellar ataxia type 6: Genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry. 1998;64:67–73.PubMedGoogle Scholar
  31. 31.
    Friedman JH, Fernandez HH, Sudarsky LR. REM behavior disorder and excessive daytime somnolence in Machado-Joseph disease (SCA-3). Mov Disord. 2003;18:1520–2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ludger Schöls
    • 1
    • 2
  • Christoph Linnemann
    • 1
  • Christoph Globas
    • 1
  1. 1.Hertie Institute for Clinical Brain Research, Department of NeurodegenerationUniversity of TübingenTübingenGermany
  2. 2.Center of Neurology and Hertie-Institut for Clinical Brain ResearchTübingenGermany

Personalised recommendations