The Cerebellum

, Volume 7, Issue 2, pp 170–178 | Cite as

Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4)

Original Article


Spinocerebellar ataxia 17 (SCA17) or Huntington’s disease-like-4 is a neurodegenerative disease caused by the expansion above 44 units of a CAG/CAA repeat in the coding region of the TATA box binding protein (TBP) gene leading to an abnormal expansion of a polyglutamine stretch in the corresponding protein. Alleles with 43 and 44 repeats have been identified in sporadic cases and their pathogenicity remains uncertain. Furthermore, incomplete penetrance of pathological alleles with up to 49 repeats has been suggested. The imperfect nature of the repeat makes intergenerational instability extremely rare and de novo mutations are most likely the result of partial duplications. This is one of the rarer forms of autosomal dominant cerebellar ataxia but the associated phenotype is often severe, involving various systems (cerebral cortex, striatum, and cerebellum), with extremely variable age at onset (range: 3–75 years) and clinical presentation. This gene is thought to account for a small proportion of patients with a Huntington’s disease-like phenotype and cerebellar signs. Parkinson’s disease-like, Creutzfeldt-Jakob disease-like and Alzheimer disease-like phenotypes have also been described with small SCA17 expansions. The abnormal protein is expressed at the same level as its normal counterpart and forms neuronal intranuclear inclusions containing other proteins involved in protein folding or degradation. The increase in the size of the glutamine stretch enhances transcription in vitro, probably leading to transcription deregulation. Interestingly, the TBP protein mutated in SCA17 is recruited in the inclusions of other polyglutaminopathies, suggesting its involvement in the transcription down-regulation observed in these diseases.

Key words

Spinocerebellar ataxias spinocerebellar degenerations Huntington’s disease SCA17 HDL4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRefGoogle Scholar
  2. 2.
    Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 1993;4:221–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 1996;14:269–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 1996;14:285–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 1996;14:277–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue I, Katayama S, et al. CAG expansion in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 1994;8:221–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nature Genet. 1997;15:62–9.PubMedCrossRefGoogle Scholar
  8. 8.
    David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet. 1997;17:65–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Koob MD, Benzow KA, Bird TD, Day JW, Moseley ML, Ranum LPW. Rapid cloning of expanded trinucleotide repeat sequences from genomic DNA. Nature Genet. 1998;18:72–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Del-Favero J, Krols L, Michalik A, Theuns J, Löfgren A, Goossens D, et al. Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion. Hum Mol Genet. 1998;7:177–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATAbinding protein gene: a new polyglutamine disease? Hum Mol Genet. 1999;8:2047–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994;6:9–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet. 1994;6:14–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Stevanin G, Trottier Y, Cancel G, Dürr A, David G, Didierjean O, et al. Screening for proteins with polyglutamine expansions in autosomal dominant cerebellar ataxias. Hum Mol Genet. 1996;5:1887–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, et al. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol. 2004;61:727–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genet. 1999;21:379–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet. 2000;26:191–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet. 1999;23:391–2.PubMedCrossRefGoogle Scholar
  19. 19.
    van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de GR, de KI, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. 2003;72:191–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Dalski A, Atici J, Kreuz FR, Hellenbroich Y, Schwinger E, Zuhlke C. Mutation analysis in the fibroblast growth factor 14 gene: Frameshift mutation and polymorphisms in patients with inherited ataxias. Eur J Hum Genet. 2005;13:118–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D, et al. Missense mutations in the regulatory domain of PKC gamma: A new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet. 2003;72:839–49.PubMedCrossRefGoogle Scholar
  22. 22.
    Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, et al. Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol. 2004;61:1242–8.PubMedCrossRefGoogle Scholar
  23. 23.
    van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, et al. Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology. 2003;61:1760–5.PubMedGoogle Scholar
  24. 24.
    Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol. 2003;60:1749–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Verbeek DS, Knight MA, Harmison GG, Fischbeck KH, Howell BW. Protein kinase C gamma mutations in spinocerebellar ataxia 14 increase kinase activity and alter membrane targeting. Brain. 2005;128:436–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen DH, Cimino PJ, Ranum LP, Zoghbi HY, Yabe I, Schut L, et al. The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology. 2005;64:1258–60.PubMedGoogle Scholar
  27. 27.
    Klebe S, Durr A, Rentschler A, Hahn-Barma V, Abele M, Bouslam N, et al. New mutations of protein kinase C gamma associated with spinocerebellar ataxia type 14 (SCA14). Ann Neurol. 2005;58:720–729.PubMedCrossRefGoogle Scholar
  28. 28.
    Seki T, Adachi N, Ono Y, Mochizuki H, Hiramoto K, Amano T, et al. Mutant protein kinase C gamma found in spinocerebellar ataxia type 14 is susceptible to aggregate and cause cell death. J Biol Chem. 2005;280:29096–106.PubMedCrossRefGoogle Scholar
  29. 29.
    Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nature Genet. 2006;38:184–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nature Genet. 2006;38:447–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Ishikawa K, Toru S, Tsunemi T, Li M, Kobayashi K, Yokota T, et al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a singlenucleotide substitution in the 5′ untranslated region of the gene encoding a protein with spectrin repeat and rho Guanine-nucleotide exchange-factor domains. Am J Hum Genet. 2005;77:280–96.PubMedCrossRefGoogle Scholar
  32. 32.
    Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci. 2000;23:217–47.PubMedCrossRefGoogle Scholar
  33. 33.
    Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, et al. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet. 2001;9:160–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001;10:1441–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, et al. CAG repeat expansion in the TATA boxbinding protein gene causes autosomal dominant cerebellar ataxia. Brain. 2001;124:1939–47.PubMedCrossRefGoogle Scholar
  36. 36.
    Stevanin G, Fujigasaki H, Lebre AS, Camuzat A, Jeannequin C, Dode C, et al. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain. 2003;126:1599–603.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, et al. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm. 2005;112:539–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Oda M, Maruyama H, Komure O, Morino H, Terasawa H, Izumi Y, et al. Possible reduced penetrance of expansion of 44 to 47 CAG/CAA repeats in the TATA-binding protein gene in spinocerebellar ataxia type 17. Arch Neurol. 2004;61:209–12.PubMedCrossRefGoogle Scholar
  39. 39.
    Rigby PW. Three in one and one in three: it all depends on TBP. Cell. 1993;72:7–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Imbert G, Trottier Y, Beckmann J, Mandel JL. The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics. 1994;21:667–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Lescure A, Lutz Y, Eberhard D, Jacq X, Krol A, Grummt I, et al. The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters. EMBO J. 1994;13:1166–75.PubMedGoogle Scholar
  42. 42.
    Gerber HP, Seipel K, Georgiev O, Hofferer M, Hug M, Rusconi S, et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 1994;263:808–11.PubMedCrossRefGoogle Scholar
  43. 43.
    Gostout B, Liu Q, Sommer SS. ‘Cryptic’ repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: Analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am J Hum Genet. 1993;52:1182–90.PubMedGoogle Scholar
  44. 44.
    Reid SJ, Rees MI, Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, et al. Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis. 2003;13:37–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Rubinsztein DC, Leggo J, Crow TJ, DeLisi LE, Walsh C, Jain S, et al. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations and in patients with schizophrenia and bipolar affective disorder. Am J Med Genet. 1996;67:495–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Cellini E, Forleo P, Nacmias B, Tedde A, Bagnoli S, Piacentini S, et al. Spinocerebellar ataxia type 17 repeat in patients with Huntington’s disease-like and ataxia. Ann Neurol. 2004;56:163–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, et al. Trinucleotide repeats in 202 families with ataxia: A small expanded (CAG)n allele at the SCA17 locus. Arch Neurol. 2002;59:623–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol. 2003;54:367–75.PubMedCrossRefGoogle Scholar
  49. 49.
    Bauer P, Laccone F, Rolfs A, Wullner U, Bosch S, Peters H, et al. Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington’s disease-like phenotype. J Med Genet. 2004;41:230–2.PubMedCrossRefGoogle Scholar
  50. 50.
    Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, et al. SCA17 homozygote showing Huntington’s disease-like phenotype. Ann Neurol. 2004;55:281–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, et al. Genetic testing in spinocerebellar ataxia in Taiwan: Expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson’s disease. Clin Genet. 2004;65:209–14.PubMedCrossRefGoogle Scholar
  52. 52.
    Zuhlke C, Dalski A, Schwinger E, Finckh U. Spinocerebellar ataxia type 17: Report of a family with reduced penetrance of an unstable Gln49 TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes. BMC Med Genet. 2005;6:27.PubMedCrossRefGoogle Scholar
  53. 53.
    De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, et al. Dementia, ataxia, extrapyramidal features, and epilepsy: Phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci. 2003;24:166–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Zuhlke C, Gehlken U, Hellenbroich Y, Schwinger E, Burk K. Phenotypical variability of expanded alleles in the TATAbinding protein gene. Reduced penetrance in SCA17? J Neurol. 2003;250:161–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Zuhlke CH, Spranger M, Spranger S, Voigt R, Lanz M, Gehlken U, et al. SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. Eur J Hum Genet. 2003;11:629–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, et al. Intergenerational instability and marked anticipation in SCA-17. Neurology. 2003;61:1441–3.PubMedGoogle Scholar
  57. 57.
    Shatunov A, Fridman EA, Pagan FI, Leib J, Singleton A, Hallett M, et al. Small de novo duplication in the repeat region of the TATA-box-binding protein gene manifest with a phenotype similar to variant Creutzfeldt-Jakob disease. Clin Genet. 2004;66:496–501.PubMedCrossRefGoogle Scholar
  58. 58.
    Bruni AC, Takahashi-Fujigasaki J, Maltecca F, Foncin JF, Servadio A, Casari G, et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol. 2004;61:1314–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Myers RH, MacDonald ME, Koroshetz WJ, Duyao MP, Ambrose CM, Taylor SA, et al. De novo expansion of a (CAG)n repeat in sporadic Huntington’s disease. Nature Genet. 1993;5:168–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Stevanin G, Giunti P, Belal GDS, Durr A, Ruberg M, Wood N, et al. De novo expansion of intermediate alleles in spinocerebellar ataxia 7. Hum Mol Genet. 1998;7:1809–13.PubMedCrossRefGoogle Scholar
  61. 61.
    Mittal U, Roy S, Jain S, Srivastava AK, Mukerji M. Postzygotic de novo trinucleotide repeat expansion at spinocerebellar ataxia type 7 locus: Evidence from an Indian family. J Hum Genet. 2005;50:155–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Giunti P, Stevanin G, Worth P, David G, Brice A, Wood NW. Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet. 1999;64:1594–603.PubMedCrossRefGoogle Scholar
  63. 63.
    Shizuka M, Watanabe M, Ikeda Y, Mizushima K, Okamoto K, Shoji M. Molecular analysis of a de novo mutation for spinocerebellar ataxia type 6 and (CAG)n repeat units in normal elder controls. J Neurol Sci. 1998;161:85–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Watanabe M, Satoh A, Kanemoto M, Ohkoshi N, Shoji S. De novo expansion of a CAG repeat in a japanese patient with sporadic Huntington’s disease. J Neurol Sci. 2000;178:159–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Schols L, Gispert S, Vorgerd M, Menezes Vieira-Saecker AM, Blanke P, Auburger G, et al. Spinocerebellar ataxia type 2: Genotype and phenotype in German kindreds. Arch Neurol. 1997;54:1073–80.PubMedGoogle Scholar
  66. 66.
    Bauer P, Kraus J, Matoska V, Brouckova M, Zumrova A, Goetz P. Large de novo expansion of CAG repeats in patient with sporadic spinocerebellar ataxia type 7. J Neurol. 2004;251:1023–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Maruyama H, Izumi Y, Morino H, Oda M, Toji H, Nakamura S, et al. Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: A study of 1,286 Japanese patients. Am J Med Genet. 2002;114:578–83.PubMedCrossRefGoogle Scholar
  68. 68.
    Hagenah JM, Zuhlke C, Hellenbroich Y, Heide W, Klein C. Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov Disord. 2004;19:217–20.PubMedCrossRefGoogle Scholar
  69. 69.
    Manganelli F, Perretti A, Nolano M, Lanzillo B, Bruni AC, De Michele G, et al. Electrophysiologic characterization in spinocerebellar ataxia 17. Neurology. 2006;66:932–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Craig K, Keers SM, Walls TJ, Curtis A, Chinnery PF. Minimum prevalence of spinocerebellar ataxia 17 in the north east of England. J Neurol Sci. 2005;239:105–09.PubMedCrossRefGoogle Scholar
  71. 71.
    Alendar A, Euljkovic B, Savic D, Djarmati A, Keckarevic M, Ristic A, et al. Spinocerebellar ataxia type 17 in the Yugoslav population. Acta Neurol Scand. 2004;109:185–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Costa MC, Teixeira-Castro A, Constante M, Magalhaes M, Magalhaes P, Cerqueira J, et al. Exclusion of mutations in the PRNP, JPH3, TBP, ATN1, CREBBP, POU3F2 and FTL genes as a cause of disease in Portuguese patients with a Huntington-like phenotype. J Hum Genet. 2006;51:645–51.CrossRefGoogle Scholar
  73. 73.
    Seixas AI, Maurer MH, Lin M, Callahan C, Ahuja A, Matsuura T, et al. FXTAS, SCA10, and SCA17 in American patients with movement disorders. Am J Med Genet A. 2005;136A:87–9.CrossRefGoogle Scholar
  74. 74.
    Filla A, De Michele G, Cocozza S, Patrignani A, Volpe G, Castaldo I, et al. Early onset autosomal dominant dementia with ataxia, extrapyramidal features, and epilepsy. Neurology. 2002;58:922–8.PubMedGoogle Scholar
  75. 75.
    Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K. The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord. 2007;13:246–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen CM, Lane HY, Wu YR, Ro LS, Chen FL, Hung WL, et al. Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res. 2005;78:131–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Hernandez D, Hanson M, Singleton A, Gwinn-Hardy K, Freeman J, Ravina B, et al. Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism Relat Disord. 2003;9:317–20.PubMedCrossRefGoogle Scholar
  78. 78.
    Grundmann K, Laubis-Herrmann U, Dressler D, Vollmer-Haase J, Bauer P, Stuhrmann M, et al. Mutation at the SCA17 locus is not a common cause of primary dystonia. J Neurol. 2004;251:1232–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Loy CT, Sweeney MG, Davis MB, Wills AJ, Sawle GV, Lees AJ, et al. Spinocerebellar ataxia type 17: extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord. 2005;20:1521–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Minnerop M, Joe A, Lutz M, Bauer P, Urbach H, Helmstaedter C, et al. Putamen dopamine transporter and glucose metabolism are reduced in SCA17. Ann Neurol. 2005;58:490–1.PubMedCrossRefGoogle Scholar
  81. 81.
    Stevanin G, Durr A, Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet. 2000;8:4–18.PubMedCrossRefGoogle Scholar
  82. 82.
    Sato K, Kashihara K, Okada S, Ikeuchi T, Tsuji S, Shomori T, et al. Does homozygosity advance the onset of dentatorubral- pallidoluysian atrophy? Neurology. 1995;45:1934–6.PubMedGoogle Scholar
  83. 83.
    Sobue G, Doyu M, Nakao N, Shimada N, Mitsuma T, Maruyama H, et al. Homozygosity for Machado-Joseph disease gene enhances phenotypic severity [letter]. J Neurol Neurosurg Psychiatry. 1996;60:354–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Ikeuchi T, Takano H, Koide R, Horikawa Y, Honma Y, Onishi Y, et al. Spinocerebellar ataxia type 6: CAG repeat expansion in alpha1A voltage-dependent calcium channel gene and clinical variations in Japanese population. Ann Neurol. 1997;42:879–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, et al. Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain. 2003;126:946–55.PubMedCrossRefGoogle Scholar
  86. 86.
    Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, et al. Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature. 1995;378:403–06.PubMedCrossRefGoogle Scholar
  87. 87.
    Martianov I, Viville S, Davidson I. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science. 2002;298:1036–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Uchihara T, Fujigasaki H, Koyano S, Nakamura A, Yagishita S, Iwabuchi K. Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias – triple-labeling immunofluorescence study. Acta Neuropathol (Berl). 2001;102:149–52.Google Scholar
  89. 89.
    Roon-Mom WM, Reid SJ, Jones AL, MacDonald ME, Faull RL, Snell RG. Insoluble TATA-binding protein accumulation in Huntington’s disease cortex. Brain Res Mol Brain Res. 2002;109:1–10.PubMedGoogle Scholar
  90. 90.
    Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol. 1998;143:1457–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.INSERM U679, Groupe Pitié-SalpetrièreParis Cedex 13France
  2. 2.Université Pierre et Marie Curie – Paris 6, UMR S679, Institut Fédératif de Recherche en NeurosciencesGroupe Hospitalier Pitié-SalpetrièreParisFrance
  3. 3.Département de Génétique et CytogénétiqueAPHP, Groupe Hospitalier Pitié-SalpetrièreParisFrance

Personalised recommendations