The Cerebellum

, Volume 7, Issue 2, pp 179–183

Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21)

  • J. Delplanque
  • D. Devos
  • I. Vuillaume
  • A. De Becdelievre
  • E. Vangelder
  • C. A. Maurage
  • K. Dujardin
  • A. Destée
  • B. Sablonnière
Original Article

Abstract

Spinocerebellar ataxia 21 is a slowly progressive and mild ataxia associated with extrapyramidal signs. Affected subjects exhibit a moderate gait and limb ataxia variably associated with akinesia, tremor, rigidity, hyporeflexia, and mild cognitive impairment. The responsible gene has been assigned to a 19 Mbases interval on chromosome 7p in a single French family. No evidence of significant linkage to this locus was found in 21 other families obtained from the EUROSCA consortium. The locus interval contains several candidate genes that could be responsible for the disease. Direct sequencing of NDUFA4, PHF14, KIAA0960, ARLA4, ETV1, DGKB, HDAC9, FERD3L, ITGB8, and SP4 genes were performed, but all the direct mutation analyses were negative excluding pathogenic mutations associated with the disease. Therefore, the gene responsible for SCA21 remains to be identified.

Key words

Ataxia SCA21 locus extrapyramidal features linkage French family 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol. 1993;61:1–14.PubMedGoogle Scholar
  2. 2.
    Schöls I, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: Clinical features, genetics and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRefGoogle Scholar
  3. 3.
    Dueñas AM. The highly heterogeneous spinocerebellar ataxias: From genes to therapeutic intervention. Cerebellum. 2007; this issue.[x-ref].Google Scholar
  4. 4.
    Taroni F, Di Donato S. Pathways to motor incoordination: The inherited ataxias. Nat Rev Neurosci. 2004;5:641–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Devos D, Schraen-Maschke S, Vuillaume I, Dujardin K, Naze P, Willoteaux C, Destee A, Sablonniere B. Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology. 2001;56:234–8.PubMedGoogle Scholar
  6. 6.
    Vuillaume I, Devos D, Schraen-Maschke S, Dina C, Lemainque A, Vasseur F, et al. A new locus for spinocerebellar ataxia maps to chromosome 7p21.3–p15.1. Ann Neurol. 2002;52:666–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Goto K, Kondo H. Diacylglycerol kinase in the central nervous system. Molecular heterogeneity and gene expression. Chem Phys Lipids. 1999;98:109–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins are astrocytesecreted proteins that promote CNS synaptogenesis. Cell. 2005;120:421–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Wu Z, Guo H, Chow N, Sallstrom J, Bell RD, Deane R, et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer’s disease. Nat Med. 2005;11:959–65.PubMedGoogle Scholar
  10. 10.
    Trifaro JM, Vitale ML, Rodriguez de Castillo A. Scinderin and chromaffin cell actin network dynamics during neurotransmitter release. J Physiol Paris. 1993;87:89–106.PubMedCrossRefGoogle Scholar
  11. 11.
    Garbe DS, Das A, Dubreuil RR, Bashaw GJ. Beta-spectrin functions independantly of ankyrin to regulate the establishment and maintenance of axon connections in the drosophila embryonic CNS. Development, 2007;134(2):273–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Schmitz-Hübsch T, Tezenas du Montcel S, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, et al. Scale for the assessment and rating of ataxia. Neurology. 2006;66:1717–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Brkanac Z, Fernandez M, Matsushita M, Lipe H, Wolff J, Bird TD, Raskind WH. Autosomal dominant sensory/motor neuropathy with ataxia (SMNA): Linkage to chromosome 7q22–q32. Am J Med Genet. 2002;114:450–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Bruni AC, Takahashi-Fujigasaki J, Maltecca F, Foncin JF, Servadio A, Casari G, et al. Behavioral disorder dementia, ataxia and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol. 2004;61:1314–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I, Dichgans J. Cognitive deficits in spinocerebellar ataxia type 1,2 and 3. J Neurol. 2003;250:207–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Verbeek DS, Schelhaas HJ, Ippel EF, Beemer FA, Pearson PL, Sinke RJ. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia on chromosome region 1p21–q21. Hum Genet. 2002;111:388–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Delplanque
    • 1
  • D. Devos
    • 2
  • I. Vuillaume
    • 3
  • A. De Becdelievre
    • 1
    • 3
  • E. Vangelder
    • 1
  • C. A. Maurage
    • 4
  • K. Dujardin
    • 2
  • A. Destée
    • 2
  • B. Sablonnière
    • 1
    • 3
    • 5
  1. 1.INSERM U837, Jean-Pierre Aubert Research CenterLilleFrance
  2. 2.Department of Neurology, Salengro Hospital, Regional University Hospital Center, and EA2683, Institut de Médecine Prédictive et de Recherche ThérapeutiqueUniversity of Lille France
  3. 3.Department of Neurobiology, Salengro Hospital, Regional University Hospital CenterUniversity of Lille France
  4. 4.Department of NeuropathologyRegional University Hospital CenterLilleFrance
  5. 5.INSERM U837, Laboratoire G.Biserte, Faculté de MédecineLille CedexFrance

Personalised recommendations