The Cerebellum

, Volume 7, Issue 1, pp 18–25 | Cite as

Expression, localization and possible actions of 25-Dx, a membraneassociated putative progesterone-binding protein, in the developing Purkinje cell of the cerebellum: A new insight into the biosynthesis, metabolism and multiple actions of progesterone as a neurosteroid

  • Hirotaka Sakamoto
  • Kazuyoshi Ukena
  • Mitsuhiro Kawata
  • Kazuyoshi Tsutsui
Review Article


Neurosteroids are now known to be steroids that are synthesized de novo from cholesterol in the central and peripheral nervous systems of vertebrates through mechanisms at least partly independent of peripheral steroidogenic glands, such as the adrenal and gonads. A series of our studies have demonstrated that the rat Purkinje cell, a cerebellar neuron, actively produces progesterone de novo from cholesterol only during neonatal life and progesterone promotes dendritic growth, spinogenesis and synaptogenesis via its nuclear receptor in this neuron. Thus the Purkinje cell serves as an excellent cellular model for understanding the formation of cerebellar neuronal circuit in relation to genomic neurosteroid actions. Recently, we have further found that Purkinje cells express the putative membrane progesterone receptor, 25-Dx in rats. By immunocytochemistry, the expression of 25-Dx was localized in the Purkinje cell and external granule cell layer. RT-PCR and Western immunoblot analyses revealed the expressions of 25-Dx and its mRNA in the rat cerebellum, which increased during neonatal life. Therefore, progesterone would promote dendritic growth, spinogenesis and synaptogenesis via 25-Dx as well as its nuclear receptor in the Purkinje cell in the neonate. Because the subcellular localization of 25-Dx was associated with membrane structures of the endoplasmic reticulum and Golgi, 25-Dx may also play a role in the regulation of neurosteroidogenesis in the developing Purkinje cell. Here we summarize the advances made in our understanding of the expression, localization and its possible actions of 25-Dx in the developing Purkinje cell.

Key words

Purkinje cell neurosteroids 25-Dx membrane progesterone receptor nongenomic action 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baulieu EE. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res. 1997;52:1–32.PubMedGoogle Scholar
  2. 2.
    Tsutsui K, Ukena K, Takase M, Kohchi C, Lea RW. Neurosteroid biosynthesis in vertebrate brains. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999;124:121–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Tsutsui K, Ukena K, Usui M, Sakamoto H, Takase M. Novel brain function: biosynthesis and actions of neurosteroids in neurons. Neurosci Res. 2000;36:261–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol. 2000;21:1–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Tsutsui K, Sakamoto H, Shikimi H, Ukena K. Organizing actions of neurosteroids in the Purkinje neuron. Neurosci Res. 2004;49:273–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsutsui K. Biosynthesis and organizing action of neurosteroids in the developing Purkinje cell. Cerebellum. 2006;5:89–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Hu ZY, Bourreau E, Jung-Testas I, Robel P, Baulieu EE. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone. Proc Natl Acad Sci USA. 1987;84:8215–19.PubMedCrossRefGoogle Scholar
  8. 8.
    Akwa Y, Young J, Kabbadj K, Sancho MJ, Zucman D, Vourc’h C, Jung-Testas I, Hu ZY, Le Goascogne C, Jo DH, et al. Neurosteroids: biosynthesis, metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J Steroid Biochem Mol Biol. 1991;40:71–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Baulieu E-E. Neurosteroids: a new function in the brain. Biol Cell. 1991;71:3–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Usui M, Yamazaki T, Kominami S, Tsutsui K. Avian neurosteroids. II. Localization of a cytochrome P450scc-like substance in the quail brain. Brain Res. 1995;678:10–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Tsutsui K, Yamazaki T, Usui M, Furukawa Y, Ukena K, Kohchi C, Kominami S. P450scc activity in the brain. In: Harvey S, Etches R, editors. P450scc activity in the brain. Bristol: Journal of Endocrinology Ltd, 1997. pp 427–36.Google Scholar
  12. 12.
    Tsutsui K, Usui M, Yamazaki T, Ukena K, Kominami S. Neurosteroids in the avian brain. In: Maitra S, editor. Neurosteroids in the avian brain. Burdwan: Burdwan press, 1997. pp 151–9.Google Scholar
  13. 13.
    Matsunaga M, Ukena K, Tsutsui K. Expression and localization of cytochrome P450 17α-hydroxylase/c17,20-lyase in the avian brain. Brain Res. 2001;899:112–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Takase M, Ukena K, Yamazaki T, Kominami S, Tsutsui K. Pregnenolone, pregnenolone sulfate, and cytochrome P450 side-chain cleavage enzyme in the amphibian brain and their seasonal changes. Endocrinology. 1999;140:1936–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Sakamoto H, Ukena K, Tsutsui K. Activity and localization of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase in the zebrafish central nervous system. J Comp Neurol. 2001;439:291–305.PubMedCrossRefGoogle Scholar
  16. 16.
    Ukena K, Usui M, Kohchi C, Tsutsui K. Cytochrome P450 side-chain cleavage enzyme in the cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology. 1998;139:137–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Ukena K, Kohchi C, Tsutsui K. Expression and activity of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase in the rat Purkinje neuron during neonatal life. Endocrinology. 1999;140:805–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Sakamoto H, Mezaki Y, Shikimi H, Ukena K, Tsutsui K. Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology. 2003;144:4466–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Altman J. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol. 1972;145:399–463.PubMedCrossRefGoogle Scholar
  20. 20.
    Altman J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol. 1972;145:353–97.PubMedCrossRefGoogle Scholar
  21. 21.
    Sakamoto H, Ukena K, Tsutsui K. Effects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis. J Neurosci. 2001;21:6221–32.PubMedGoogle Scholar
  22. 22.
    Sakamoto H, Ukena K, Tsutsui K. Dendritic spine formation in response to progesterone synthesized de novo in the developing Purkinje cell in rats. Neurosci Lett. 2002;322:111–15.PubMedCrossRefGoogle Scholar
  23. 23.
    Sakamoto H, Shikimi H, Ukena K, Tsutsui K. Neonatal expression of progesterone receptor isoforms in the cerebellar Purkinje cell in rats. Neurosci Lett. 2003;343:163–6.PubMedGoogle Scholar
  24. 24.
    Smith SS, Waterhouse BD, Woodward DJ. Sex steroid effects on extrahypothalamic CNS. II. Progesterone, alone and in combination with estrogen, modulates cerebellar responses to amino acid neurotransmitters. Brain Res. 1987;422:52–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Smith SS, Waterhouse BD, Chapin JK, Woodward DJ. Progesterone alters GABA and glutamate responsiveness: a possible mechanism for its anxiolytic action. Brain Res. 1987;400:353–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith SS. Progesterone enhances inhibitory responses of cerebellar Purkinje cells mediated by the GABAA receptor subtype. Brain Res Bull. 1989;23:317–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Ke FC, Ramirez VD. Binding of progesterone to nerve cell membranes of rat brain using progesterone conjugated to 125I-bovine serum albumin as a ligand. J Neurochem. 1990;54:467–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Bükü soglu C, Krieger N. Photoaffinity labeling with progesterone-11α-hemisuccinate-(2-[125I] iodohistamine) identifies four protein bands in mouse brain membranes. J Neurochem. 1994;63:1434–8.Google Scholar
  29. 29.
    Selmin O, Lucier GW, Clark GC, Tritscher AM, Vanden Heuvel JP, Gastel JA, Walker NJ, Sutter TR, Bell DA. Isolation and characterization of a novel gene induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Carcinogenesis. 1996;17:2609–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Gerdes D, Wehling M, Leube B, Falkenstein E. Cloning and tissue expression of two putative steroid membrane receptors. Biol Chem. 1998;379:907–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Falkenstein E, Meyer C, Eisen C, Scriba PC, Wehling M. Full-length cDNA sequence of a progesterone membranebinding protein from porcine vascular smooth muscle cells. Biochem Biophys Res Commun. 1996;229:86–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Raza FS, Takemori H, Tojo H, Okamoto M, Vinson GP. Identification of the rat adrenal zona fasciculata/reticularis specific protein, inner zone antigen (IZAg), as the putative membrane progesterone receptor. Eur J Biochem. 2001;268:2141–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Kwon L, Kwon L, O’Brien D, Bell D, Eddy E. Molecular cloning of a putative membrane-associated progesterone receptor. Biol Reprod. 1998;58(Suppl.):78.Google Scholar
  34. 34.
    Sakamoto H, Ukena K, Takemori H, Okamoto M, Kawata M, Tsutsui K. Expression and localization of 25-Dx, a membrane-associated putative progesterone-binding protein, in the developing Purkinje cell. Neuroscience. 2004;126:325–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Mason J. The 3β-hydroxysteroid dehydrogenase gene family of enzymes. Trends Endocrinol Metab. 1993;4:199–203.CrossRefGoogle Scholar
  36. 36.
    Kohchi C, Ukena K, Tsutsui K. Age- and region-specific expressions of the messenger RNAs encoding for steroidogenic enzymes p450scc, P450c17 and 3β-HSD in the postnatal rat brain. Brain Res. 1998;801:233–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Tsutsui K, Sakamoto H, Ukena K. A novel aspect of the cerebellum: biosynthesis of neurosteroids in the Purkinje cell. Cerebellum. 2003;2:215–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Tsutsui K, Sakamoto H, Ukena K. Biosynthesis and action of neurosteroids in the cerebellar Purkinje neuron. J Steroid Biochem Mol Biol. 2003;85:311–21.PubMedCrossRefGoogle Scholar
  39. 39.
    Tsutsui K, Ukena K. Neurosteroids in the cerebellar Purkinje neuron and their actions (review). Int J Mol Med. 1999;4:49–56.PubMedGoogle Scholar
  40. 40.
    Meyer C, Schmid R, Scriba PC, Wehling M. Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur J Biochem. 1996;239:726–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Liard S, Vinson G, Whitehouse B. Monoclonal-antibodies against rat adrenocortical cell antigens. Acta Endocrinol (Copenh). 1988;119:420–6.Google Scholar
  42. 42.
    Barker S, Laird SM, Ho MM, Vinson GP, Hinson JP. Characterization of a rat adrenocortical inner zone-specific antigen and identification of its putative precursor. J Mol Endocrinol. 1992;9:95–102.PubMedGoogle Scholar
  43. 43.
    Ho MM, Barker S, Vinson GP. Distribution of the adrenocortical inner zone antigen. J Endocrinol. 1994;141:459–66.PubMedGoogle Scholar
  44. 44.
    Min L, Takemori H, Nonaka Y, Katoh Y, Doi J, Horike N, Osamu H, Raza FS, Vinson GP, Okamoto M. Characterization of the adrenal-specific antigen IZA (inner zone antigen) and its role in the steroidogenesis. Mol Cell Endocrinol. 2004;215:143–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Min L, Strushkevich NV, Harnastai IN, Iwamoto H, Gilep AA, Takemori H, Usanov SA, Nonaka Y, Hori H, Vinson GP, Okamoto M. Molecular identification of adrenal inner zone antigen as a heme-binding protein. FEBS J. 2005;272:5832–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Falkenstein E, Heck M, Gerdes D, Grube D, Christ M, Weigel M, Buddhikot M, Meizel S, Wehling M. Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2+-fluxes in sperm. Endocrinology. 1999;140:5999–6002.PubMedCrossRefGoogle Scholar
  47. 47.
    Hand RA, Craven RJ. Hpr6.6 protein mediates cell death from oxidative damage in MCF-7 human breast cancer cells. J Cell Biochem. 2003;90:534–47.PubMedCrossRefGoogle Scholar
  48. 48.
    Peluso JJ, Pappalardo A, Losel R, Wehling M. Progesterone membrane receptor component 1 expression in the immature The putative membrane progesterone receptor 25-Dx in Purkinje cells rat ovary and its role in mediating progesterone’s antiapoptotic action. Endocrinology. 2006;147:3133–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Peluso JJ. Multiplicity of progesterone’s actions and receptors in the mammalian ovary. Biol Reprod. 2006;75:2–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Engmann L, Losel R, Wehling M, Peluso JJ. Progesterone regulation of human granulosa/luteal cell viability by an RU486-independent mechanism. J Clin Endocrinol Metab. 2006;91:4962–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Krebs CJ, Jarvis ED, Chan J, Lydon JP, Ogawa S, Pfaff DW. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc Natl Acad Sci USA. 2000;97:12816–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Runko E, Kaprielian Z. Expression of Vema in the developing mouse spinal cord and optic chiasm. J Comp Neurol. 2002;451:289–99.PubMedCrossRefGoogle Scholar
  53. 53.
    Runko E, Wideman C, Kaprielian Z. Cloning and expression of VEMA: a novel ventral midline antigen in the rat CNS. Mol Cell Neurosci. 1999;14:428–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Labombarda F, Gonzalez SL, Deniselle MC, Vinson GP, Schumacher M, De Nicola AF, Guennoun R. Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25-Dx expression in the rat spinal cord. J Neurochem. 2003;87:902–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Meffre D, Delespierre B, Gouezou M, Leclerc P, Vinson GP, Schumacher M, Stein DG, Guennoun R. The membraneassociated progesterone-binding protein 25-Dx is expressed in brain regions involved in water homeostasis and is upregulated after traumatic brain injury. J Neurochem. 2005;93:1314–26.PubMedCrossRefGoogle Scholar
  56. 56.
    Falkenstein E, Schmieding K, Lange A, Meyer C, Gerdes D, Welsch U, Wehling M. Localization of a putative progesterone membrane binding protein in porcine hepatocytes. Cell Mol Biol (Noisy-le-grand). 1998;44:571–8.Google Scholar
  57. 57.
    Tsutsui K, Ukena K, Sakamoto H. Novel cerebellar function: Neurosteroids in the Purkinje neurons and their genomic and nongenomic actions. In: Handa RJ, Hayashi S, editors. Novel cerebellar function: Neurosteroids in the Purkinje neurons and their genomic and nongenomic actions. Boca Raton: CRC Press, 2001. pp 101–16.Google Scholar
  58. 58.
    Sierra A, Lavaque E, Perez-Martin M, Azcoitia I, Hales DB, Garcia-Segura LM. Steroidogenic acute regulatory protein in the rat brain: cellular distribution, developmental regulation and overexpression after injury. Eur J Neurosci. 2003;18:1458–67.PubMedCrossRefGoogle Scholar
  59. 59.
    Ghoumari AM, Dusart I, El-Etr M, Tronche F, Sotelo C, Schumacher M, Baulieu EE. Mifepristone (RU486) protects Purkinje cells from cell death in organotypic slice cultures of postnatal rat and mouse cerebellum. Proc Natl Acad Sci USA. 2003;100:7953–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhu Y, Rice CD, Pang Y, Pace M, Thomas P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci USA. 2003;100:2231–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci USA. 2003;100:2237–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hirotaka Sakamoto
    • 1
    • 2
    • 3
  • Kazuyoshi Ukena
    • 1
    • 2
  • Mitsuhiro Kawata
    • 3
  • Kazuyoshi Tsutsui
    • 1
    • 2
  1. 1.Laboratory of Brain Science, Faculty of Integrated Arts and SciencesHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology CorporationTokyoJapan
  3. 3.Department of Anatomy and NeurobiologyKyoto Prefectural University of MedicineKyotoJapan
  4. 4.Laboratory of Integrative Brain Sciences, Department of Biology, Faculty of Education and Integrated Arts and SciencesWaseda UniversityTokyoJapan

Personalised recommendations