The Cerebellum

, Volume 7, Issue 1, pp 9–17 | Cite as

The roles of testicular orphan nuclear receptor 4 (TR4) in cerebellar development

  • Yei-Tsung Chen
  • Loretta L. Collins
  • Shu-Shi Chang
  • Chawnshang ChangEmail author


Since Testicular Receptor 4 (TR4) was cloned, efforts have been made to elucidate its physiological function. To examine the putative functions of TR4, the conventional TR4 knockout (TR4−/−) mouse model was generated. Throughout postnatal and adult stages, TR4−/− mice exhibited behavioral deficits in motor coordination, suggesting impaired cerebellar function. Histological examination of the postnatal and adult TR4−/− cerebellum revealed gross abnormalities in foliation. Further analyses demonstrated changes in the lamination of the TR4−/− cerebellar cortex, including reduction in the thickness of both the molecular layer (ML) and the internal granule layer (IGL). Analyses of the developing TR4−/− cerebellum indicate that the lamination irregularities observed may result from disrupted granule cell proliferation within the external granule cell layer (EGL), delayed inward migration of post-mitotic granule cells, and increased apoptosis during cerebellar development. In addition, abnormal development of Purkinje cells was observed in the postnatal TR4−/− cerebellum, as indicated by aberrant dendritic arborization. In postnatal, neuronal-specific TR4 knockout mice, architectural changes in the cerebellum were similar to those seen in TR4−/− animals, suggesting that TR4 function in neuronal lineages might be important for cerebellar morphogenesis, and that the effect on Purkinje cell development is likely mediated by changes elsewhere, such as in granule cells, or is highly dependent on developmental stage. Together, our findings from various TR4 knockout mouse models suggest that TR4 is required for normal cerebellar development and that failure to establish proper cytoarchitecture results in dysfunction of the cerebellum and leads to abnormal behavior.

Key words

Testicular Receptor 4 TR4 knockout mice cerebellar development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giguere V, Yang N, Segui P, Evans RM. Identification of a new class of steroid hormone receptors. Nature. 1988;331(6151):91–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Muldoon TG, Evans AC, Jr. Hormones and their receptors. Arch Intern Med. 1988;148(4):961–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Collins LL, Lee HJ, Chen YT, Chang M, Hsu HY, Yeh S, et al. The androgen receptor in spermatogenesis. Cytogenet Genome Res. 2003;103(3–4):299–301.PubMedCrossRefGoogle Scholar
  4. 4.
    Canalis E. Mechanisms of glucocorticoid action in bone. Curr Osteoporos Rep. 2005;3(3):98–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Hammer GD, Ingraham HA. Steroidogenic factor-1: its role in endocrine organ development and differentiation. Front Neuroendocrinol. 1999;20(3):199–223.PubMedCrossRefGoogle Scholar
  6. 6.
    Huang W, Schwarz EM. Mechanisms of bone resorption and new bone formation in spondyloarthropathies. Curr Rheumatol Rep. 2002;4(6):513–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Jetten AM. Recent advances in the mechanisms of action and physiological functions of the retinoid-related orphan receptors (RORs). Curr Drug Targets Inflamm Allergy. 2004;3(4):395–412.PubMedCrossRefGoogle Scholar
  8. 8.
    Jetten AM, Kurebayashi S, Ueda E. The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog Nucleic Acid Res Mol Biol. 2001;69:205–47.PubMedCrossRefGoogle Scholar
  9. 9.
    Littman DR, Sun Z, Unutmaz D, Sunshine MJ, Petrie HT, Zou YR. Role of the nuclear hormone receptor ROR gamma in transcriptional regulation, thymocyte survival, and lymphoid organogenesis. Cold Spring Harb Symp Quant Biol. 1999;64:373–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol. 2006;46:451–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Qiu Y, Krishnan V, Pereira FA, Tsai SY, Tsai MJ. Chicken ovalbumin upstream promoter-transcription factors and their regulation. J Steroid Biochem Mol Biol. 1996;56(1–6):81–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889–95.PubMedCrossRefGoogle Scholar
  13. 13.
    Chang CS, Kokontis J, Liao ST. Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science. 1988;240(4850):324–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Wikstrom AC, Okret S, Bakke O, Fuxe K, Gustafsson JA. Glucocorticoid mechanism of action: monoclonal antibodies as experimental tools. Med Oncol Tumor Pharmacother. 1986;3(3–4):185–96.PubMedGoogle Scholar
  15. 15.
    Chen KS, DeLuca HF. Cloning of the human 1 alpha,25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995;1263(1):1–9.PubMedGoogle Scholar
  16. 16.
    Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr. 1995;4(4–5):281–99.PubMedGoogle Scholar
  17. 17.
    Sundvold H, Lien S. Identification of a novel peroxisome proliferator-activated receptor (PPAR) gamma promoter in man and transactivation by the nuclear receptor RORalpha1. Biochem Biophys Res Commun. 2001;287(2):383–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Fortier TM, Vasa PP, Woodard CT. Orphan nuclear receptor betaFTZ-F1 is required for muscle-driven morphogenetic events at the prepupal-pupal transition in Drosophila melanogaster. Dev Biol. 2003;257(1):153–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee CT, Li L, Takamoto N, Martin JF, Demayo FJ, Tsai MJ, et al. The nuclear orphan receptor COUP-TFII is required for limb and skeletal muscle development. Mol Cell Biol. 2004;24(24):10835–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Lutz B, Kuratani S, Cooney AJ, Wawersik S, Tsai SY, Eichele G, et al. Developmental regulation of the orphan receptor COUP-TF II gene in spinal motor neurons. Development. 1994;120(1):25–36.PubMedGoogle Scholar
  21. 21.
    Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83(6):835–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Hirose T, Fujimoto W, Tamaai T, Kim KH, Matsuura H, Jetten AM. TAK1: molecular cloning and characterization of a new member of the nuclear receptor superfamily. Mol Endocrinol. 1994;8(12):1667–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Chang C, Da Silva SL, Ideta R, Lee Y, Yeh S, Burbach JP. Human and rat TR4 orphan receptors specify a subclass of the steroid receptor superfamily. Proc Natl Acad Sci USA. 1994;91(13):6040–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Chang C, Kokontis J, Acakpo-Satchivi L, Liao S, Takeda H, Chang Y. Molecular cloning of new human TR2 receptors: a class of steroid receptor with multiple ligand-binding domains. Biochem Biophys Res Commun. 1989;165(2):735–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Collins LL, Lee YF, Heinlein CA, Liu NC, Chen YT, Shyr CR, et al. Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc Natl Acad Sci USA. 2004;101(42):15058–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Hirose T, O’Brien DA, Jetten AM. Cloning of the gene encoding the murine orphan receptor TAK1 and cell-typespecific expression in testis. Gene. 1995;163(2):239–42.PubMedCrossRefGoogle Scholar
  27. 27.
    van Schaick HS, Rosmalen JG, Lopes da Silva S, Chang C, Burbach JP. Expression of the orphan receptor TR4 during brain development of the rat. Brain Res Mol Brain Res. 2000;77(1):104–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Young WJ, Smith SM, Chang C. Induction of the intronic enhancer of the human ciliary neurotrophic factor receptor (CNTFRalpha) gene by the TR4 orphan receptor. A member of steroid receptor superfamily. J Biol Chem. 1997;272(5):3109–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Hirose T, Apfel R, Pfahl M, Jetten AM. The orphan receptor TAK1 acts as a repressor of RAR-, RXR- and T3R-mediated signaling pathways. Biochem Biophys Res Commun. 1995;211(1):83–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee YF, Young WJ, Burbach JP, Chang C. Negative feedback control of the retinoid-retinoic acid/retinoid X receptor pathway by the human TR4 orphan receptor, a member of the steroid receptor superfamily. J Biol Chem. 1998;273(22):13437–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Yan ZH, Karam WG, Staudinger JL, Medvedev A, Ghanayem BI, Jetten AM. Regulation of peroxisome proliferator-activated receptor alpha-induced transactivation by the nuclear orphan receptor TAK1/TR4. J Biol Chem. 1998;273(18):10948–57.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee YF, Pan HJ, Burbach JP, Morkin E, Chang C. Identification of direct repeat 4 as a positive regulatory element for the human TR4 orphan receptor. A modulator for the thyroid hormone target genes. J Biol Chem. 1997;272(18):12215–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Young WJ, Lee YF, Smith SM, Chang C. A bidirectional regulation between the TR2/TR4 orphan receptors (TR2/ TR4) and the ciliary neurotrophic factor (CNTF) signaling pathway. J Biol Chem. 1998;273(33):20877–85.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim E, Xie S, Yeh SD, Lee YF, Collins LL, Hu YC, et al. Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster. J Biol Chem. 2003;278(47):46919–26.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee HJ, Lee Y, Burbach JP, Chang C. Suppression of gene expression on the simian virus 40 major late promoter by human TR4 orphan receptor. A member of the steroid receptor superfamily. J Biol Chem. 1995;270(50):30129–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee YF, Young WJ, Lin WJ, Shyr CR, Chang C. Differential regulation of direct repeat 3 vitamin D3 and direct repeat 4 thyroid hormone signaling pathways by the human TR4 orphan receptor. J Biol Chem. 1999;274(23):16198–205.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang Y, Dufau ML. Nuclear orphan receptors regulate transcription of the gene for the human luteinizing hormone receptor. J Biol Chem. 2000;275(4):2763–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Lin WJ, Li J, Lee YF, Yeh SD, Altuwaijri S, Ou JH, et al. Suppression of hepatitis B virus core promoter by the nuclear orphan receptor TR4. J Biol Chem. 2003;278(11):9353–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee HJ, Lee YF, Chang C. TR4 orphan receptor represses the human steroid 21-hydroxylase gene expression through the monomeric AGGTCA motif. Biochem Biophys Res Commun. 2001;285(5):1361–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Burbach JP vSH, Lopes da Silva S, Asbreuk CH, Smidt MP. Hypothalamic transcription factors and the regulation of the hypothalamo-neurohypophysial system. Adv Exp Med Biol, (449):29–37.Google Scholar
  41. 41.
    Hwang SB, Burbach JP, Chang C. TR4 orphan receptor crosstalks to chicken ovalbumin upstream protein-transcription factor and thyroid hormone receptor to induce the Y-T. Chen et al. transcriptional activity of the human immunodeficiency virus type 1 long-terminal repeat. Endocrine. 1998;8(2):169–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee YF, Shyr CR, Thin TH, Lin WJ, Chang C. Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily. Proc Natl Acad Sci USA. 1999;96(26):14724–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Shyr CR, Hu YC, Kim E, Chang C. Modulation of estrogen receptor-mediated transactivation by orphan receptor TR4 in MCF-7 cells. J Biol Chem. 2002;277(17):14622–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vaidya RA, Vaidya VA. Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci. 2005;29(3):414–26.PubMedCrossRefGoogle Scholar
  45. 45.
    Marsh-Armstrong N, Cai L, Brown DD. Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis. Proc Natl Acad Sci USA. 2004;101(1):165–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Park JI, Tsai SY, Tsai MJ. Molecular mechanism of chicken ovalbumin upstream promoter-transcription factor (COUP-TF) actions. Keio J Med. 2003;52(3):174–81.PubMedGoogle Scholar
  47. 47.
    Paternostro MA, Meisami E. Essential role of thyroid hormones in maturation of olfactory receptor neurons: an immunocytochemical study of number and cytoarchitecture of OMP-positive cells in developing rats. Int J Dev Neurosci. 1996;14(7–8):867–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Schlosser G, Koyano-Nakagawa N, Kintner C. Thyroid hormone promotes neurogenesis in the Xenopus spinal cord. Dev Dyn. 2002;225(4):485–98.PubMedCrossRefGoogle Scholar
  49. 49.
    Shibata H, Ando T, Suzuki T, Kurihara I, Hayashi K, Hayashi M, et al. COUP-TFI expression in human adrenocortical adenomas: possible role in steroidogenesis. J Clin Endocrinol Metab. 1998;83(12):4520–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Bhatia AJ, Schneider JE, Wade GN. Thermoregulatory and maternal nestbuilding in Syrian hamsters: interaction of ovarian steroids and energy demand. Physiol Behav. 1995;58(1):141–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Woodside B, Leon M. Thermoendocrine influences on maternal nesting behavior in rats. J Comp Physiol Psychol. 1980;94(1):41–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Deacon RM, Croucher A, Rawlins JN. Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behav Brain Res. 2002;132(2):203–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Cogn Sci. 1998;2(9):307–13.CrossRefGoogle Scholar
  54. 54.
    Herrup and K, Kuemerle B. The compartmentalization of the cerebellum. Annu Rev Neurosci. 1997;20(1):61–90.CrossRefGoogle Scholar
  55. 55.
    Chen YT, Collins LL, Uno H, Chang C. Deficits in motor coordination with aberrant cerebellar development in mice lacking testicular orphan nuclear receptor 4. Mol Cell Biol. 2005;25(7):2722–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Barski JJ, Hartmann J, Rose CR, Hoebeek F, Morl K, Noll-Hussong M, et al. Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. J Neurosci. 2003;23(8):3469–77.PubMedGoogle Scholar
  57. 57.
    Barmack NH, Qian Z. Activity-dependent expression of calbindin in rabbit floccular Purkinje cells modulated by optokinetic stimulation. Neuroscience. 2002;113(1):235–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Ribar TJ, Rodriguiz RM, Khiroug L, Wetsel WC, Augustine GJ, Means AR. Cerebellar defects in Ca2+/ calmodulin kinase IV-deficient mice. J Neurosci. 2000;20(22):RC107.PubMedGoogle Scholar
  59. 59.
    Garcia MM, Gilster J, Harlan RE. Chronic morphine decreases calbindin D28k immunoreactivity in a subset of cerebellar Purkinje neurons of rat brain. Brain Res. 1996;734(1–2):123–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Barski JJ, Dethleffsen K, Meyer M. Cre recombinase expression in cerebellar Purkinje cells. Genesis. 2000;28(3–4):93–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yei-Tsung Chen
    • 1
  • Loretta L. Collins
    • 1
    • 2
  • Shu-Shi Chang
    • 3
  • Chawnshang Chang
    • 1
    • 4
    Email author
  1. 1.George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, Radiation OncologyThe Cancer CenterRochesterUSA
  2. 2.Department of Environmental MedicineUniversity of RochesterRochesterUSA
  3. 3.China Medical UniversityTaichungTaiwan
  4. 4.Departments of Pathology and UrologyUniversity of RochesterRochesterUSA

Personalised recommendations