Journal of Hematopathology

, 4:149 | Cite as

New insights into the pathobiology of chronic lymphocytic leukemia

Review Article
  • 87 Downloads

Abstract

Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with a varying clinical outcome; however, the pathogenic mechanisms involved in disease development have remained largely unknown. In recent years, novel biomarkers, such as certain recurrent genomic alterations and the immunoglobulin heavy variable gene mutational status, have significantly improved the subdivision of the disease along with the prognostic assessment of individual patients. Advanced molecular studies have also revealed important genetic/epigenetic events and potential susceptibility loci for CLL, as well as implicating antigens in CLL development. Furthermore, the presence of monoclonal B cell lymphocytosis (MBL) has been demonstrated to precede CLL and appears to be a pre-leukemic condition. In this review, we will not only focus on recent developments made in the fields of genetics and immunogenetics in CLL, but also provide a brief overview of MBL, since we believe that advancements in these areas will have a major impact on our understanding of CLL pathobiology.

Keywords

Chronic lymphocytic leukemia Pathogenesis Genetic aberrations Epigenetics Susceptibility loci Immunoglobulin genes Antigens Monoclonal B cell lymphocytosis 

Notes

Acknowledgements

This work was supported by the Nordic Cancer Union, the Swedish Cancer Society, the Swedish Research Council, the Medical Faculty of Uppsala University, Uppsala University Hospital, and Lion's Cancer Research Foundation in Uppsala, Sweden. The authors are grateful to Lesley-Ann Sutton for critical reading of the manuscript. The authors declare that they have no conflict of interest.

References

  1. 1.
    Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, Kipps TJ (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111:5446–5456PubMedCrossRefGoogle Scholar
  2. 2.
    Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343:1910–1916PubMedCrossRefGoogle Scholar
  3. 3.
    Gunnarsson R, Isaksson A, Mansouri M, Goransson H, Jansson M, Cahill N, Rasmussen M, Staaf J, Lundin J, Norin S, Buhl AM, Smedby KE, Hjalgrim H, Karlsson K, Jurlander J, Juliusson G, Rosenquist R (2010) Large but not small copy-number alterations correlate to high-risk genomic aberrations and survival in chronic lymphocytic leukemia: a high-resolution genomic screening of newly diagnosed patients. Leukemia 24:211–215PubMedCrossRefGoogle Scholar
  4. 4.
    Kujawski L, Ouillette P, Erba H, Saddler C, Jakubowiak A, Kaminski M, Shedden K, Malek SN (2008) Genomic complexity identifies patients with aggressive chronic lymphocytic leukemia. Blood 112:1993–2003PubMedCrossRefGoogle Scholar
  5. 5.
    Pfeifer D, Pantic M, Skatulla I, Rawluk J, Kreutz C, Martens UM, Fisch P, Timmer J, Veelken H (2007) Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays. Blood 109:1202–1210PubMedCrossRefGoogle Scholar
  6. 6.
    Corcoran M, Parker A, Orchard J, Davis Z, Wirtz M, Schmitz OJ, Oscier D (2005) ZAP-70 methylation status is associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica 90:1078–1088PubMedGoogle Scholar
  7. 7.
    Kanduri M, Cahill N, Goransson H, Enstrom C, Ryan F, Isaksson A, Rosenquist R (2010) Differential genome-wide array-based methylation profiles in prognostic subsets of chronic lymphocytic leukemia. Blood 115:296–305PubMedCrossRefGoogle Scholar
  8. 8.
    Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, Hackanson B, Grever MR, Lucas DM, Matkovic JJ, Lin TS, Kipps TJ, Murray F, Weisenburger D, Sanger W, Lynch J, Watson P, Jansen M, Yoshinaga Y, Rosenquist R, de Jong PJ, Coggill P, Beck S, Lynch H, de la Chapelle A, Plass C (2007) Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129:879–890PubMedCrossRefGoogle Scholar
  9. 9.
    Tong WG, Wierda WG, Lin E, Kuang SQ, Bekele BN, Estrov Z, Wei Y, Yang H, Keating MJ, Garcia-Manero G (2010) Genome-wide DNA methylation profiling of chronic lymphocytic leukemia allows identification of epigenetically repressed molecular pathways with clinical impact. Epigenetics 5:499–508PubMedCrossRefGoogle Scholar
  10. 10.
    Crowther-Swanepoel D, Broderick P, Di Bernardo MC, Dobbins SE, Torres M, Mansouri M, Ruiz-Ponte C, Enjuanes A, Rosenquist R, Carracedo A, Jurlander J, Campo E, Juliusson G, Montserrat E, Smedby KE, Dyer MJ, Matutes E, Dearden C, Sunter NJ, Hall AG, Mainou-Fowler T, Jackson GH, Summerfield G, Harris RJ, Pettitt AR, Allsup DJ, Bailey JR, Pratt G, Pepper C, Fegan C, Parker A, Oscier D, Allan JM, Catovsky D, Houlston RS (2010) Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet 42:132–136PubMedCrossRefGoogle Scholar
  11. 11.
    Crowther-Swanepoel D, Mansouri M, Enjuanes A, Vega A, Smedby KE, Ruiz-Ponte C, Jurlander J, Juliusson G, Montserrat E, Catovsky D, Campo E, Carracedo A, Rosenquist R, Houlston RS (2010) Verification that common variation at 2q37.1, 6p25.3, 11q24.1, 15q23, and 19q13.32 influences chronic lymphocytic leukaemia risk. Br J Haematol 150:473–479PubMedGoogle Scholar
  12. 12.
    Di Bernardo MC, Crowther-Swanepoel D, Broderick P, Webb E, Sellick G, Wild R, Sullivan K, Vijayakrishnan J, Wang Y, Pittman AM, Sunter NJ, Hall AG, Dyer MJ, Matutes E, Dearden C, Mainou-Fowler T, Jackson GH, Summerfield G, Harris RJ, Pettitt AR, Hillmen P, Allsup DJ, Bailey JR, Pratt G, Pepper C, Fegan C, Allan JM, Catovsky D, Houlston RS (2008) A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet 40:1204–1210PubMedCrossRefGoogle Scholar
  13. 13.
    Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, Schulman P, Vinciguerra VP, Rai K, Rassenti LZ, Kipps TJ, Dighiero G, Schroeder HW Jr, Ferrarini M, Chiorazzi N (1998) Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102:1515–1525PubMedCrossRefGoogle Scholar
  14. 14.
    Messmer BT, Albesiano E, Efremov DG, Ghiotto F, Allen SL, Kolitz J, Foa R, Damle RN, Fais F, Messmer D, Rai KR, Ferrarini M, Chiorazzi N (2004) Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med 200:519–525PubMedCrossRefGoogle Scholar
  15. 15.
    Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T, Belhoul L, Stella S, Stavroyianni N, Crespo M, Hadzidimitriou A, Sutton L, Bosch F, Laoutaris N, Anagnostopoulos A, Montserrat E, Fassas A, Dighiero G, Caligaris-Cappio F, Merle-Beral H, Ghia P, Davi F (2007) Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood 109:259–270PubMedCrossRefGoogle Scholar
  16. 16.
    Tobin G, Thunberg U, Johnson A, Eriksson I, Soderberg O, Karlsson K, Merup M, Juliusson G, Vilpo J, Enblad G, Sundstrom C, Roos G, Rosenquist R (2003) Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 101:4952–4957PubMedCrossRefGoogle Scholar
  17. 17.
    Catera R, Silverman GJ, Hatzi K, Seiler T, Didier S, Zhang L, Herve M, Meffre E, Oscier DG, Vlassara H, Scofield RH, Chen Y, Allen SL, Kolitz J, Rai KR, Chu CC, Chiorazzi N (2008) Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med 14:665–674PubMedCrossRefGoogle Scholar
  18. 18.
    Chu CC, Catera R, Zhang L, Didier S, Agagnina BM, Damle RN, Kaufman MS, Kolitz JE, Allen SL, Rai KR, Chiorazzi N (2010) Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: implications for patient outcome and cell of origin. Blood 115:3907–3915PubMedCrossRefGoogle Scholar
  19. 19.
    Herve M, Xu K, Ng YS, Wardemann H, Albesiano E, Messmer BT, Chiorazzi N, Meffre E (2005) Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 115:1636–1643PubMedCrossRefGoogle Scholar
  20. 20.
    Lanemo Myhrinder A, Hellqvist E, Sidorova E, Soderberg A, Baxendale H, Dahle C, Willander K, Tobin G, Backman E, Soderberg O, Rosenquist R, Horkko S, Rosen A (2008) A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood 111:3838–3848PubMedCrossRefGoogle Scholar
  21. 21.
    Ghia P, Prato G, Scielzo C, Stella S, Geuna M, Guida G, Caligaris-Cappio F (2004) Monoclonal CD5+ and CD5− B-lymphocyte expansions are frequent in the peripheral blood of the elderly. Blood 103:2337–2342PubMedCrossRefGoogle Scholar
  22. 22.
    Rawstron AC, Green MJ, Kuzmicki A, Kennedy B, Fenton JA, Evans PA, O'Connor SJ, Richards SJ, Morgan GJ, Jack AS, Hillmen P (2002) Monoclonal B lymphocytes with the characteristics of "indolent" chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood 100:635–639PubMedCrossRefGoogle Scholar
  23. 23.
    Gahrton G, Robert KH, Friberg K, Zech L, Bird AG (1980) Nonrandom chromosomal aberrations in chronic lymphocytic leukemia revealed by polyclonal B-cell-mitogen stimulation. Blood 56:640–647PubMedGoogle Scholar
  24. 24.
    Gahrton G, Robert KH, Friberg K, Zech L, Bird AG (1980) Extra chromosome 12 in chronic lymphocytic leukaemia. Lancet 1:146–147PubMedCrossRefGoogle Scholar
  25. 25.
    Hurley JN, Fu SM, Kunkel HG, Chaganti RS, German J (1980) Chromosome abnormalities of leukaemic B lymphocytes in chronic lymphocytic leukaemia. Nature 283:76–78PubMedCrossRefGoogle Scholar
  26. 26.
    Juliusson G, Oscier DG, Fitchett M, Ross FM, Stockdill G, Mackie MJ, Parker AC, Castoldi GL, Guneo A, Knuutila S et al (1990) Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med 323:720–724PubMedCrossRefGoogle Scholar
  27. 27.
    Dohner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M, Fischer K, Hunstein W, Lichter P (1997) 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 89:2516–2522PubMedGoogle Scholar
  28. 28.
    Stilgenbauer S, Liebisch P, James MR, Schroder M, Schlegelberger B, Fischer K, Bentz M, Lichter P, Dohner H (1996) Molecular cytogenetic delineation of a novel critical genomic region in chromosome bands 11q22.3-923.1 in lymphoproliferative disorders. Proc Natl Acad Sci USA 93:11837–11841PubMedCrossRefGoogle Scholar
  29. 29.
    Austen B, Skowronska A, Baker C, Powell JE, Gardiner A, Oscier D, Majid A, Dyer M, Siebert R, Taylor AM, Moss PA, Stankovic T (2007) Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 25:5448–5457PubMedCrossRefGoogle Scholar
  30. 30.
    Bullrich F, Rasio D, Kitada S, Starostik P, Kipps T, Keating M, Albitar M, Reed JC, Croce CM (1999) ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Res 59:24–27PubMedGoogle Scholar
  31. 31.
    Schaffner C, Stilgenbauer S, Rappold GA, Dohner H, Lichter P (1999) Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 94:748–753PubMedGoogle Scholar
  32. 32.
    Gunn SR, Hibbard MK, Ismail SH, Lowery-Nordberg M, Mellink CH, Bahler DW, Abruzzo LV, Enriquez EL, Gorre ME, Mohammed MS, Robetorye RS (2009) Atypical 11q deletions identified by array CGH may be missed by FISH panels for prognostic markers in chronic lymphocytic leukemia. Leukemia 23:1011–1017PubMedCrossRefGoogle Scholar
  33. 33.
    Cardinaud B, Moreilhon C, Marcet B, Robbe-Sermesant K, LeBrigand K, Mari B, Eclache V, Cymbalista F, Raynaud S, Barbry P (2009) miR-34b/miR-34c: a regulator of TCL1 expression in 11q- chronic lymphocytic leukaemia? Leukemia 23:2174–2177PubMedCrossRefGoogle Scholar
  34. 34.
    Herling M, Patel KA, Weit N, Lilienthal N, Hallek M, Keating MJ, Jones D (2009) High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 114:4675–4686PubMedCrossRefGoogle Scholar
  35. 35.
    Saiya-Cork K, Collins R, Parkin B, Ouillette P, Kuizon E, Kujawski L, Erba H, Campagnaro E, Shedden K, Kaminski M, Malek SN (2011) A pathobiological role of the insulin receptor in chronic lymphocytic leukemia. Clin Cancer Res 17:2679–2692PubMedCrossRefGoogle Scholar
  36. 36.
    Stilgenbauer S, Dohner H, Bulgay-Morschel M, Weitz S, Bentz M, Lichter P (1993) High frequency of monoallelic retinoblastoma gene deletion in B-cell chronic lymphoid leukemia shown by interphase cytogenetics. Blood 81:2118–2124PubMedGoogle Scholar
  37. 37.
    Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grander D, Iyengar A, Baranova A, Kashuba V, Merup M, Wu X, Gardiner A, Mullenbach R, Poltaraus A, Hultstrom AL, Juliusson G, Chapman R, Tiller M, Cotter F, Gahrton G, Yankovsky N, Zabarovsky E, Einhorn S, Oscier D (1997) Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. Oncogene 15:2463–2473PubMedCrossRefGoogle Scholar
  38. 38.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529PubMedCrossRefGoogle Scholar
  39. 39.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949PubMedCrossRefGoogle Scholar
  40. 40.
    Mosca L, Fabris S, Lionetti M, Todoerti K, Agnelli L, Morabito F, Cutrona G, Andronache A, Matis S, Ferrari F, Gentile M, Spriano M, Callea V, Festini G, Molica S, Deliliers GL, Bicciato S, Ferrarini M, Neri A (2010) Integrative genomics analyses reveal molecularly distinct subgroups of B-cell chronic lymphocytic leukemia patients with 13q14 deletion. Clin Cancer Res 16:5641–5653PubMedCrossRefGoogle Scholar
  41. 41.
    Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN (2008) Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 68:1012–1021PubMedCrossRefGoogle Scholar
  42. 42.
    Parker H, Rose-Zerilli MJ, Parker A, Chaplin T, Wade R, Gardiner A, Griffiths M, Collins A, Young BD, Oscier DG, Strefford JC (2011) 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. Leukemia 25:489–497PubMedCrossRefGoogle Scholar
  43. 43.
    Gunnarsson R, Mansouri L, Isaksson A, Göransson H, Cahill N, Jansson M, Rasmussen M, Lundin J, Norin S, Buhl AM, Ekström Smedby K, Hjalgrim H, Karlsson K, Jurlander J, Geisler C, Juliusson G, Rosenquist R (2011) Array-based genomic screening at diagnosis and follow-up in chronic lymphocytic leukemia. Haematologica Epub ahead of printGoogle Scholar
  44. 44.
    Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G, Dalla-Favera R (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17:28–40PubMedCrossRefGoogle Scholar
  45. 45.
    Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L, Kern W, Haferlach T, Haferlach C (2009) The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 23:117–124PubMedCrossRefGoogle Scholar
  46. 46.
    Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vranova V, Cejkova S, Svitakova M, Skuhrova Francova H, Brychtova Y, Doubek M, Brejcha M, Klabusay M, Mayer J, Pospisilova S, Trbusek M (2009) Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood 114:5307–5314PubMedCrossRefGoogle Scholar
  47. 47.
    Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S, De Paoli L, Spina V, Gattei V, Capello D, Forconi F, Lauria F, Gaidano G (2009) The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 15:995–1004PubMedCrossRefGoogle Scholar
  48. 48.
    Zainuddin N, Murray F, Kanduri M, Gunnarsson R, Smedby KE, Enblad G, Jurlander J, Juliusson G, Rosenquist R (2011) TP53 Mutations are infrequent in newly diagnosed chronic lymphocytic leukemia. Leuk Res 35:272–274PubMedCrossRefGoogle Scholar
  49. 49.
    Zenz T, Krober A, Scherer K, Habe S, Buhler A, Benner A, Denzel T, Winkler D, Edelmann J, Schwanen C, Dohner H, Stilgenbauer S (2008) Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 112:3322–3329PubMedCrossRefGoogle Scholar
  50. 50.
    Forconi F, Rinaldi A, Kwee I, Sozzi E, Raspadori D, Rancoita PM, Scandurra M, Rossi D, Deambrogi C, Capello D, Zucca E, Marconi D, Bomben R, Gattei V, Lauria F, Gaidano G, Bertoni F (2008) Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion. Br J Haematol 143:532–536PubMedGoogle Scholar
  51. 51.
    Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T (2007) Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia 21:2442–2451PubMedCrossRefGoogle Scholar
  52. 52.
    Zenz T, Habe S, Denzel T, Mohr J, Winkler D, Buhler A, Sarno A, Groner S, Mertens D, Busch R, Hallek M, Dohner H, Stilgenbauer S (2009) Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 114:2589–2597PubMedGoogle Scholar
  53. 53.
    Best OG, Gardiner AC, Davis ZA, Tracy I, Ibbotson RE, Majid A, Dyer MJ, Oscier DG (2009) A subset of Binet stage A CLL patients with TP53 abnormalities and mutated IGHV genes have stable disease. Leukemia 23:212–214PubMedCrossRefGoogle Scholar
  54. 54.
    Haslinger C, Schweifer N, Stilgenbauer S, Dohner H, Lichter P, Kraut N, Stratowa C, Abseher R (2004) Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol 22:3937–3949PubMedCrossRefGoogle Scholar
  55. 55.
    Porpaczy E, Bilban M, Heinze G, Gruber M, Vanura K, Schwarzinger I, Stilgenbauer S, Streubel B, Fonatsch C, Jaeger U (2009) Gene expression signature of chronic lymphocytic leukaemia with Trisomy 12. Eur J Clin Investig 39:568–575CrossRefGoogle Scholar
  56. 56.
    Buhl AM, Jurlander J, Geisler CH, Pedersen LB, Andersen MK, Josefsson P, Petersen JH, Leffers H (2006) CLLU1 expression levels predict time to initiation of therapy and overall survival in chronic lymphocytic leukemia. Eur J Haematol 76:455–464PubMedCrossRefGoogle Scholar
  57. 57.
    Josefsson P, Geisler CH, Leffers H, Petersen JH, Andersen MK, Jurlander J, Buhl AM (2007) CLLU1 expression analysis adds prognostic information to risk prediction in chronic lymphocytic leukemia. Blood 109:4973–4979PubMedCrossRefGoogle Scholar
  58. 58.
    Buhl AM, James DF, Neuberg D, Jain S, Rassenti LZ, Kipps TJ (2011) Analysis of CLLU1 expression levels before and after therapy in patients with chronic lymphocytic leukemia. Eur J Haematol 86:405–411PubMedCrossRefGoogle Scholar
  59. 59.
    Juliusson G, Merup M (1998) Cytogenetics in chronic lymphocytic leukemia. Semin Oncol 25:19–26PubMedGoogle Scholar
  60. 60.
    Schwaenen C, Nessling M, Wessendorf S, Salvi T, Wrobel G, Radlwimmer B, Kestler HA, Haslinger C, Stilgenbauer S, Dohner H, Bentz M, Lichter P (2004) Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc Natl Acad Sci USA 101:1039–1044PubMedCrossRefGoogle Scholar
  61. 61.
    Sellmann L, Gesk S, Walter C, Ritgen M, Harder L, Martin-Subero JI, Schroers R, Siemer D, Nuckel H, Dyer MJ, Duhrsen U, Siebert R, Durig J, Kuppers R (2007) Trisomy 19 is associated with trisomy 12 and mutated IGHV genes in B-chronic lymphocytic leukaemia. Br J Haematol 138:217–220PubMedCrossRefGoogle Scholar
  62. 62.
    Kotkowska A, Wawrzyniak E, Blonski JZ, Robak T, Korycka-Wolowiec A (2011) Chromosomal aberrations in chronic lymphocytic leukemia detected by conventional cytogenetics with DSP30 as a single agent: comparison with FISH. Leuk ResGoogle Scholar
  63. 63.
    Mayr C, Speicher MR, Kofler DM, Buhmann R, Strehl J, Busch R, Hallek M, Wendtner CM (2006) Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood 107:742–751PubMedCrossRefGoogle Scholar
  64. 64.
    Quintero-Rivera F, Nooraie F, Rao PN (2009) Frequency of 5'IGH deletions in B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet 190:33–39PubMedCrossRefGoogle Scholar
  65. 65.
    Cavazzini F, Hernandez JA, Gozzetti A, Russo Rossi A, De Angeli C, Tiseo R, Bardi A, Tammiso E, Crupi R, Lenoci MP, Forconi F, Lauria F, Marasca R, Maffei R, Torelli G, Gonzalez M, Martin-Jimenez P, Maria Hernandez J, Rigolin GM, Cuneo A (2008) Chromosome 14q32 translocations involving the immunoglobulin heavy chain locus in chronic lymphocytic leukaemia identify a disease subset with poor prognosis. Br J Haematol 142:529–537PubMedCrossRefGoogle Scholar
  66. 66.
    Martin-Subero JI, Ibbotson R, Klapper W, Michaux L, Callet-Bauchu E, Berger F, Calasanz MJ, De Wolf-Peeters C, Dyer MJ, Felman P, Gardiner A, Gascoyne RD, Gesk S, Harder L, Horsman DE, Kneba M, Kuppers R, Majid A, Parry-Jones N, Ritgen M, Salido M, Sole F, Thiel G, Wacker HH, Oscier D, Wlodarska I, Siebert R (2007) A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a t(14;19)(q32;q13) or variant BCL3-translocation. Leukemia 21:1532–1544PubMedCrossRefGoogle Scholar
  67. 67.
    Willis TG, Dyer MJ (2000) The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 96:808–822PubMedGoogle Scholar
  68. 68.
    Sellmann L, Scholtysik R, Kreuz M, Cyrull S, Tiacci E, Stanelle J, Carpinteiro A, Nuckel H, Boes T, Gesk S, Siebert R, Klein-Hitpass L, Duhrsen U, Durig J, Kuppers R (2010) Gene dosage effects in chronic lymphocytic leukemia. Cancer Genet Cytogenet 203:149–160PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Q, Didonato JA, Karin M, McKeithan TW (1994) BCL3 encodes a nuclear protein which can alter the subcellular location of NF-kappa B proteins. Mol Cell Biol 14:3915–3926PubMedGoogle Scholar
  70. 70.
    Kojima K, Taniwaki M, Yoshino T, Katayama Y, Sunami K, Fukuda S, Omoto E, Harada M, Sezaki T (1998) Trisomy 12 and t(14;18) in B-cell chronic lymphocytic leukemia. Int J Hematol 67:199–203PubMedCrossRefGoogle Scholar
  71. 71.
    Lau LC, Lim P, Lim YC, Teng LM, Lim TH, Lim LC, Tan SY, Lim ST, Sanger WG, Tien SL (2008) Occurrence of trisomy 12, t(14;18)(q32;q21), and t(8;14)(q24.1;q11.2) in a patient with B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet 185:95–101PubMedCrossRefGoogle Scholar
  72. 72.
    Chapiro E, Leporrier N, Radford-Weiss I, Bastard C, Mossafa H, Leroux D, Tigaud I, De Braekeleer M, Terre C, Brizard F, Callet-Bauchu E, Struski S, Veronese L, Fert-Ferrer S, Taviaux S, Lesty C, Davi F, Merle-Beral H, Bernard OA, Sutton L, Raynaud SD, Nguyen-Khac F (2010) Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages. Leuk Res 34:63–68PubMedCrossRefGoogle Scholar
  73. 73.
    Jarosova M, Urbankova H, Plachy R, Papajik T, Holzerova M, Balcarkova J, Pikalova Z, Divoky V, Indrak K (2010) Gain of chromosome 2p in chronic lymphocytic leukemia: significant heterogeneity and a new recurrent dicentric rearrangement. Leuk Lymphoma 51:304–313PubMedCrossRefGoogle Scholar
  74. 74.
    Gunn SR, Bolla AR, Barron LL, Gorre ME, Mohammed MS, Bahler DW, Mellink CH, van Oers MH, Keating MJ, Ferrajoli A, Coombes KR, Abruzzo LV, Robetorye RS (2009) Array CGH analysis of chronic lymphocytic leukemia reveals frequent cryptic monoallelic and biallelic deletions of chromosome 22q11 that include the PRAME gene. Leuk Res 33:1276–1281PubMedCrossRefGoogle Scholar
  75. 75.
    Lehmann S, Ogawa S, Raynaud SD, Sanada M, Nannya Y, Ticchioni M, Bastard C, Kawamata N, Koeffler HP (2008) Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. Cancer 112:1296–1305PubMedCrossRefGoogle Scholar
  76. 76.
    Linet MS, Schubauer-Berigan MK, Weisenburger DD, Richardson DB, Landgren O, Blair A, Silver S, Field RW, Caldwell G, Hatch M, Dores GM (2007) Chronic lymphocytic leukaemia: an overview of aetiology in light of recent developments in classification and pathogenesis. Br J Haematol 139:672–686PubMedCrossRefGoogle Scholar
  77. 77.
    Pan JW, Cook LS, Schwartz SM, Weis NS (2002) Incidence of leukemia in Asian migrants to the United States and their descendants. Cancer Causes Control 13:791–795PubMedCrossRefGoogle Scholar
  78. 78.
    Goldin LR, Pfeiffer RM, Li X, Hemminki K (2004) Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood 104:1850–1854PubMedCrossRefGoogle Scholar
  79. 79.
    Goldin LR, Sgambati M, Marti GE, Fontaine L, Ishibe N, Caporaso N (1999) Anticipation in familial chronic lymphocytic leukemia. Am J Hum Genet 65:265–269PubMedCrossRefGoogle Scholar
  80. 80.
    Ishibe N, Sgambati MT, Fontaine L, Goldin LR, Jain N, Weissman N, Marti GE, Caporaso NE (2001) Clinical characteristics of familial B-CLL in the National Cancer Institute Familial Registry. Leuk Lymphoma 42:99–108PubMedCrossRefGoogle Scholar
  81. 81.
    Wiernik PH, Ashwin M, Hu XP, Paietta E, Brown K (2001) Anticipation in familial chronic lymphocytic leukaemia. Br J Haematol 113:407–414PubMedCrossRefGoogle Scholar
  82. 82.
    Sellick GS, Goldin LR, Wild RW, Slager SL, Ressenti L, Strom SS, Dyer MJ, Mauro FR, Marti GE, Fuller S, Lyttelton M, Kipps TJ, Keating MJ, Call TG, Catovsky D, Caporaso N, Houlston RS (2007) A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci for chronic lymphocytic leukemia. Blood 110:3326–3333PubMedCrossRefGoogle Scholar
  83. 83.
    Lu R (2008) Interferon regulatory factor 4 and 8 in B-cell development. Trends Immunol 29:487–492PubMedCrossRefGoogle Scholar
  84. 84.
    Chang CC, Lorek J, Sabath DE, Li Y, Chitambar CR, Logan B, Kampalath B, Cleveland RP (2002) Expression of MUM1/IRF4 correlates with clinical outcome in patients with B-cell chronic lymphocytic leukemia. Blood 100:4671–4675PubMedCrossRefGoogle Scholar
  85. 85.
    Ito M, Iida S, Inagaki H, Tsuboi K, Komatsu H, Yamaguchi M, Nakamura N, Suzuki R, Seto M, Nakamura S, Morishima Y, Ueda R (2002) MUM1/IRF4 expression is an unfavorable prognostic factor in B-cell chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Jpn J Cancer Res 93:685–694PubMedGoogle Scholar
  86. 86.
    Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196PubMedCrossRefGoogle Scholar
  87. 87.
    Lyko F, Stach D, Brenner A, Stilgenbauer S, Dohner H, Wirtz M, Wiessler M, Schmitz OJ (2004) Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients. Electrophoresis 25:1530–1535PubMedCrossRefGoogle Scholar
  88. 88.
    Stach D, Schmitz OJ, Stilgenbauer S, Benner A, Dohner H, Wiessler M, Lyko F (2003) Capillary electrophoretic analysis of genomic DNA methylation levels. Nucleic Acids Res 31:E2PubMedCrossRefGoogle Scholar
  89. 89.
    Wahlfors J, Hiltunen H, Heinonen K, Hamalainen E, Alhonen L, Janne J (1992) Genomic hypomethylation in human chronic lymphocytic leukemia. Blood 80:2074–2080PubMedGoogle Scholar
  90. 90.
    Raval A, Lucas DM, Matkovic JJ, Bennett KL, Liyanarachchi S, Young DC, Rassenti L, Kipps TJ, Grever MR, Byrd JC, Plass C (2005) TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. J Clin Oncol 23:3877–3885PubMedCrossRefGoogle Scholar
  91. 91.
    Rush LJ, Raval A, Funchain P, Johnson AJ, Smith L, Lucas DM, Bembea M, Liu TH, Heerema NA, Rassenti L, Liyanarachchi S, Davuluri R, Byrd JC, Plass C (2004) Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res 64:2424–2433PubMedCrossRefGoogle Scholar
  92. 92.
    Durig J, Nuckel H, Cremer M, Fuhrer A, Halfmeyer K, Fandrey J, Moroy T, Klein-Hitpass L, Duhrsen U (2003) ZAP-70 expression is a prognostic factor in chronic lymphocytic leukemia. Leukemia 17:2426–2434PubMedCrossRefGoogle Scholar
  93. 93.
    Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, Yang L, Pickeral OK, Rassenti LZ, Powell J, Botstein D, Byrd JC, Grever MR, Cheson BD, Chiorazzi N, Wilson WH, Kipps TJ, Brown PO, Staudt LM (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194:1639–1647PubMedCrossRefGoogle Scholar
  94. 94.
    Rahmatpanah FB, Carstens S, Hooshmand SI, Welsh EC, Sjahputera O, Taylor KH, Bennett LB, Shi H, Davis JW, Arthur GL, Shanafelt TD, Kay NE, Wooldridge JE, Caldwell CW (2009) Large-scale analysis of DNA methylation in chronic lymphocytic leukemia. Epigenomics 1:39–61PubMedCrossRefGoogle Scholar
  95. 95.
    Hammarsund M, Corcoran MM, Wilson W, Zhu C, Einhorn S, Sangfelt O, Grander D (2004) Characterization of a novel B-CLL candidate gene—DLEU7—located in the 13q14 tumor suppressor locus. FEBS Lett 556:75–80PubMedCrossRefGoogle Scholar
  96. 96.
    Irving L, Mainou-Fowler T, Parker A, Ibbotson RE, Oscier DG, Strathdee G (2011) Methylation markers identify high risk patients in IGHV mutated chronic lymphocytic leukemia. Epigenetics 6:300–306PubMedCrossRefGoogle Scholar
  97. 97.
    Blum KA, Liu Z, Lucas DM, Chen P, Xie Z, Baiocchi R, Benson DM, Devine SM, Jones J, Andritsos L, Flynn J, Plass C, Marcucci G, Chan KK, Grever MR, Byrd JC (2010) Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation. Br J Haematol 150:189–195PubMedGoogle Scholar
  98. 98.
    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J, Lichtman SM, Schulman P, Vinciguerra VP, Rai KR, Ferrarini M, Chiorazzi N (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–1847PubMedGoogle Scholar
  99. 99.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94:1848–1854PubMedGoogle Scholar
  100. 100.
    Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, Freedman A, Inghirami G, Cro L, Baldini L, Neri A, Califano A, Dalla-Favera R (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 194:1625–1638PubMedCrossRefGoogle Scholar
  101. 101.
    Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ, Sison CP, Allen SL, Kolitz J, Schulman P, Vinciguerra VP, Budde P, Frey J, Rai KR, Ferrarini M, Chiorazzi N (2002) B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99:4087–4093PubMedCrossRefGoogle Scholar
  102. 102.
    Vilpo J, Tobin G, Hulkkonen J, Hurme M, Thunberg U, Sundstrom C, Vilpo L, Rosenquist R (2003) Surface antigen expression and correlation with variable heavy-chain gene mutation status in chronic lymphocytic leukemia. Eur J Haematol 70:53–59PubMedCrossRefGoogle Scholar
  103. 103.
    Chiorazzi N, Ferrarini M (2003) B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 21:841–894PubMedCrossRefGoogle Scholar
  104. 104.
    Chiorazzi N, Ferrarini M (2011) Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 117:1781–1791PubMedCrossRefGoogle Scholar
  105. 105.
    Johnson TA, Rassenti LZ, Kipps TJ (1997) Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. J Immunol 158:235–246PubMedGoogle Scholar
  106. 106.
    Kipps TJ, Tomhave E, Pratt LF, Duffy S, Chen PP, Carson DA (1989) Developmentally restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 86:5913–5917PubMedCrossRefGoogle Scholar
  107. 107.
    Tobin G, Thunberg U, Johnson A, Thorn I, Soderberg O, Hultdin M, Botling J, Enblad G, Sallstrom J, Sundstrom C, Roos G, Rosenquist R (2002) Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 99:2262–2264PubMedCrossRefGoogle Scholar
  108. 108.
    Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stella S, Guida G, Michel A, Crespo M, Laoutaris N, Montserrat E, Anagnostopoulos A, Dighiero G, Fassas A, Caligaris-Cappio F, Davi F (2005) Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood 105:1678–1685PubMedCrossRefGoogle Scholar
  109. 109.
    Thorselius M, Krober A, Murray F, Thunberg U, Tobin G, Buhler A, Kienle D, Albesiano E, Maffei R, Dao-Ung LP, Wiley J, Vilpo J, Laurell A, Merup M, Roos G, Karlsson K, Chiorazzi N, Marasca R, Dohner H, Stilgenbauer S, Rosenquist R (2006) Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood 107:2889–2894PubMedCrossRefGoogle Scholar
  110. 110.
    Falt S, Merup M, Tobin G, Thunberg U, Gahrton G, Rosenquist R, Wennborg A (2005) Distinctive gene expression pattern in VH3-21 utilizing B-cell chronic lymphocytic leukemia. Blood 106:681–689PubMedCrossRefGoogle Scholar
  111. 111.
    Ghiotto F, Fais F, Valetto A, Albesiano E, Hashimoto S, Dono M, Ikematsu H, Allen SL, Kolitz J, Rai KR, Nardini M, Tramontano A, Ferrarini M, Chiorazzi N (2004) Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J Clin Invest 113:1008–1016PubMedGoogle Scholar
  112. 112.
    Tobin G, Thunberg U, Karlsson K, Murray F, Laurell A, Willander K, Enblad G, Merup M, Vilpo J, Juliusson G, Sundstrom C, Soderberg O, Roos G, Rosenquist R (2004) Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood 104:2879–2885PubMedCrossRefGoogle Scholar
  113. 113.
    Widhopf GF 2nd, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ (2004) Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 104:2499–2504PubMedCrossRefGoogle Scholar
  114. 114.
    Darzentas N, Hadzidimitriou A, Murray F, Hatzi K, Josefsson P, Laoutaris N, Moreno C, Anagnostopoulos A, Jurlander J, Tsaftaris A, Chiorazzi N, Belessi C, Ghia P, Rosenquist R, Davi F, Stamatopoulos K (2010) A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia 24:125–132PubMedCrossRefGoogle Scholar
  115. 115.
    Bomben R, Dal Bo M, Capello D, Forconi F, Maffei R, Laurenti L, Rossi D, Del Principe MI, Zucchetto A, Bertoni F, Rossi FM, Bulian P, Cattarossi I, Ilariucci F, Sozzi E, Spina V, Zucca E, Degan M, Lauria F, Del Poeta G, Efremov DG, Marasca R, Gaidano G, Gattei V (2009) Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: results from an Italian multicentre study. Br J Haematol 144:492–506PubMedCrossRefGoogle Scholar
  116. 116.
    Marincevic M, Cahill N, Gunnarsson R, Isaksson A, Mansouri M, Goransson H, Rasmussen M, Jansson M, Ryan F, Karlsson K, Adami HO, Davi F, Jurlander J, Juliusson G, Stamatopoulos K, Rosenquist R (2010) High-density screening reveals a different spectrum of genomic aberrations in chronic lymphocytic leukemia patients with 'stereotyped' IGHV3-21 and IGHV4-34 B-cell receptors. Haematologica 95:1519–1525PubMedCrossRefGoogle Scholar
  117. 117.
    Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C, Laoutaris N, Karlsson K, Baran-Marzsak F, Tsaftaris A, Moreno C, Anagnostopoulos A, Caligaris-Cappio F, Vaur D, Ouzounis C, Belessi C, Ghia P, Davi F, Rosenquist R, Stamatopoulos K (2008) Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 111:1524–1533PubMedCrossRefGoogle Scholar
  118. 118.
    A Hadzidimitriou AA, F Murray, M-H Delfau-Larue, N Darzentas, A Navarro Lopez, P Rombout, K Beldjord, M H. Dreyling, T Papadaki, A Anagnostopoulos, A Rosenwald, P Groenen, E Campo, R Rosenquist, F Davi, C Pott, and K Stamatopoulos (2009) Sequence-based evidence for antigen selection in mantle cell lymphoma: remarkable immunoglobulin gene repertoire biases, stereotyped antigen-binding sites and recurrent hypermutations in certain subsets. Blood (ASH Annual Meeting Abstracts) 114,1933Google Scholar
  119. 119.
    Forconi F, Potter KN, Wheatley I, Darzentas N, Sozzi E, Stamatopoulos K, Mockridge CI, Packham G, Stevenson FK (2010) The normal IGHV1-69-derived B-cell repertoire contains stereotypic patterns characteristic of unmutated CLL. Blood 115:71–77PubMedCrossRefGoogle Scholar
  120. 120.
    Hadzidimitriou A, Darzentas N, Murray F, Smilevska T, Arvaniti E, Tresoldi C, Tsaftaris A, Laoutaris N, Anagnostopoulos A, Davi F, Ghia P, Rosenquist R, Stamatopoulos K, Belessi C (2009) Evidence for the significant role of immunoglobulin light chains in antigen recognition and selection in chronic lymphocytic leukemia. Blood 113:403–411PubMedCrossRefGoogle Scholar
  121. 121.
    Kostareli E, Sutton LA, Hadzidimitriou A, Darzentas N, Kouvatsi A, Tsaftaris A, Anagnostopoulos A, Rosenquist R, Stamatopoulos K (2010) Intraclonal diversification of immunoglobulin light chains in a subset of chronic lymphocytic leukemia alludes to antigen-driven clonal evolution. Leukemia 24:1317–1324PubMedCrossRefGoogle Scholar
  122. 122.
    Sutton LA, Kostareli E, Hadzidimitriou A, Darzentas N, Tsaftaris A, Anagnostopoulos A, Rosenquist R, Stamatopoulos K (2009) Extensive intraclonal diversification in a subgroup of chronic lymphocytic leukemia patients with stereotyped IGHV4-34 receptors: implications for ongoing interactions with antigen. Blood 114:4460–4468PubMedCrossRefGoogle Scholar
  123. 123.
    Borche L, Lim A, Binet JL, Dighiero G (1990) Evidence that chronic lymphocytic leukemia B lymphocytes are frequently committed to production of natural autoantibodies. Blood 76:562–569PubMedGoogle Scholar
  124. 124.
    Rosen A, Murray F, Evaldsson C, Rosenquist R (2010) Antigens in chronic lymphocytic leukemia–implications for cell origin and leukemogenesis. Semin Cancer Biol 20:400–409PubMedCrossRefGoogle Scholar
  125. 125.
    Kostareli E, Hadzidimitriou A, Stavroyianni N, Darzentas N, Athanasiadou A, Gounari M, Bikos V, Agathagelidis A, Touloumenidou T, Zorbas I, Kouvatsi A, Laoutaris N, Fassas A, Anagnostopoulos A, Belessi C, Stamatopoulos K (2009) Molecular evidence for EBV and CMV persistence in a subset of patients with chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Leukemia 23:919–924PubMedCrossRefGoogle Scholar
  126. 126.
    Han T, Ozer H, Gavigan M, Gajera R, Minowada J, Bloom ML, Sadamori N, Sandberg AA, Gomez GA, Henderson ES (1984) Benign monoclonal B cell lymphocytosis—a benign variant of CLL: clinical, immunologic, phenotypic, and cytogenetic studies in 20 patients. Blood 64:244–252PubMedGoogle Scholar
  127. 127.
    Marti GE, Rawstron AC, Ghia P, Hillmen P, Houlston RS, Kay N, Schleinitz TA, Caporaso N (2005) Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J Haematol 130:325–332PubMedCrossRefGoogle Scholar
  128. 128.
    Ghia P, Rawstron AC (2010) New biological prognostic markers in CLL. Chapter 9, From MBL to MRD: exploiting flow cytometry in chronic lymphocytic leukemia. Kluwer, MilanGoogle Scholar
  129. 129.
    Nieto WG, Almeida J, Romero A, Teodosio C, Lopez A, Henriques AF, Sanchez ML, Jara-Acevedo M, Rasillo A, Gonzalez M, Fernandez-Navarro P, Vega T, Orfao A (2009) Increased frequency (12%) of circulating chronic lymphocytic leukemia-like B-cell clones in healthy subjects using a highly sensitive multicolor flow cytometry approach. Blood 114:33–37PubMedCrossRefGoogle Scholar
  130. 130.
    Rawstron AC, Yuille MR, Fuller J, Cullen M, Kennedy B, Richards SJ, Jack AS, Matutes E, Catovsky D, Hillmen P, Houlston RS (2002) Inherited predisposition to CLL is detectable as subclinical monoclonal B-lymphocyte expansion. Blood 100:2289–2290PubMedCrossRefGoogle Scholar
  131. 131.
    Fazi C, Dagklis A, Cottini F, Scarfo L, Bertilaccio MT, Finazzi R, Memoli M, Ghia P (2010) Monoclonal B cell lymphocytosis in hepatitis C virus infected individuals. Cytometry B Clin Cytom 78(Suppl 1):S61–S68PubMedGoogle Scholar
  132. 132.
    Rawstron AC, Bennett FL, O'Connor SJ, Kwok M, Fenton JA, Plummer M, de Tute R, Owen RG, Richards SJ, Jack AS, Hillmen P (2008) Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med 359:575–583PubMedCrossRefGoogle Scholar
  133. 133.
    Shanafelt TD, Kay NE, Rabe KG, Call TG, Zent CS, Maddocks K, Jenkins G, Jelinek DF, Morice WG, Boysen J, Schwager S, Bowen D, Slager SL, Hanson CA (2009) Brief report: natural history of individuals with clinically recognized monoclonal B-cell lymphocytosis compared with patients with Rai 0 chronic lymphocytic leukemia. J Clin Oncol 27:3959–3963PubMedCrossRefGoogle Scholar
  134. 134.
    Scarfo L, Dagklis A, Scielzo C, Fazi C, Ghia P (2010) CLL-like monoclonal B-cell lymphocytosis: are we all bound to have it? Semin Cancer Biol 20:384–390PubMedCrossRefGoogle Scholar
  135. 135.
    Dagklis A, Fazi C, Sala C, Cantarelli V, Scielzo C, Massacane R, Toniolo D, Caligaris-Cappio F, Stamatopoulos K, Ghia P (2009) The immunoglobulin gene repertoire of low-count chronic lymphocytic leukemia (CLL)-like monoclonal B lymphocytosis is different from CLL: diagnostic implications for clinical monitoring. Blood 114:26–32PubMedCrossRefGoogle Scholar
  136. 136.
    Rossi D, Sozzi E, Puma A, De Paoli L, Rasi S, Spina V, Gozzetti A, Tassi M, Cencini E, Raspadori D, Pinto V, Bertoni F, Gattei V, Lauria F, Gaidano G, Forconi F (2009) The prognosis of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukaemia and is recapitulated by biological risk factors. Br J Haematol 146:64–75PubMedCrossRefGoogle Scholar
  137. 137.
    Landgren O, Albitar M, Ma W, Abbasi F, Hayes RB, Ghia P, Marti GE, Caporaso NE (2009) B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med 360:659–667PubMedCrossRefGoogle Scholar
  138. 138.
    Crowther-Swanepoel D, Corre T, Lloyd A, Gaidano G, Olver B, Bennett FL, Doughty C, Toniolo D, Calligaris-Cappio F, Ghia P, Rossi D, Rawstron AC, Catovsky D, Houlston RS (2010) Inherited genetic susceptibility to monoclonal B-cell lymphocytosis. Blood 116:5957–5960PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Immunology, Genetics and Pathology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations