Advertisement

Cancer Microenvironment

, Volume 8, Issue 1, pp 15–21 | Cite as

Immune Effects of Bevacizumab: Killing Two Birds with One Stone

  • Yasir Y. Elamin
  • Shereen Rafee
  • Sinead Toomey
  • Bryan T. Hennessy
Review Paper

Abstract

Angiogenesis or new vessel formation is essential for tumour growth and progression. Therefore, targeting angiogenesis has been an attractive strategy in the treatment ofcancer. Bevacizumab is a recombinant humanized monoclonal IgG1 antibody thattargets vascular endothelial growth factor-A (VEGF-A) - a key molecular player inangiogenesis. Bevacizumumab has shown clinical efficacy in phase III clinical trials inseveral advanced solid malignancies. The clinical efficacy of bevacizumumab isprimarily due to its antiangiogenic effects; however, there are direct antitumor effectsand immunomodulatory effects. Enhancing the immune system to restore itsantitumour activity has been utilized successfully in clinical setting. In this article we willdiscuss the possible immunomodulatory effects of the most clinically usedantiangiogenic agent; bevacizumumab.

Keywords

Bevacizumab Immunomodulation Antiangiogenesis Tumour microenvironment 

References

  1. 1.
    Shih T, Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 11:1779–802CrossRefGoogle Scholar
  2. 2.
    Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27(8):1227–34CrossRefPubMedGoogle Scholar
  3. 3.
    Ramalingam SS, Dahlberg SE, Langer CJ, Gray R, Belani CP, Brahmer JR, Sandler AB, Schiller JH, Johnson DH (2008) Eastern Cooperative Oncology Group. Outcomes for elderly, advanced-stage non-small-cell lung cancer patients treated with bevacizumab in combination with carboplatin and paclitaxel: analysis of Eastern Cooperative Oncology Group Trial 4599. J Clin Oncol 26(1):60–5CrossRefPubMedGoogle Scholar
  4. 4.
    Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, Couture F, Sirzén F, Cassidy J (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26(12):2013–9CrossRefPubMedGoogle Scholar
  5. 5.
    Van Cutsem E, Rivera F, Berry S, Kretzschmar A, Michael M, DiBartolomeo M, Mazier MA, Canon JL, Georgoulias V, Peeters M, Bridgewater J, Cunningham D, First BEAT (2009) investigators. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol 20(11):1842–7CrossRefPubMedGoogle Scholar
  6. 6.
    Valachis A, Polyzos NP, Patsopoulos NA, Georgoulias V, Mavroudis D, Mauri D (2010) Bevacizumab in metastatic breast cancer: a meta-analysis of randomized controlled trials. Breast Cancer Res Treat 122(1):1–7CrossRefPubMedGoogle Scholar
  7. 7.
    Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D, Davidson NE (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357(26):2666–76CrossRefPubMedGoogle Scholar
  8. 8.
    Robert NJ, Diéras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, Perez EA, Yardley DA, Chan SY, Zhou X, Phan SC, O’Shaughnessy J (2011) RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29(10):1252–60CrossRefPubMedGoogle Scholar
  9. 9.
    Escudier B, Szczylik C, Porta C, Gore M (2012) Treatment selection in metastatic renal cell carcinoma: expert consensus. Nat Rev Clin Oncol 9(6):327–37CrossRefPubMedGoogle Scholar
  10. 10.
    Escudier B, Albiges L (2011) Vascular endothelial growth factor-targeted therapy for the treatment of renal cell carcinoma. Drugs 71(9):1179–91CrossRefPubMedGoogle Scholar
  11. 11.
    Aghajanian C, Blank SV, Goff BA, Judson PL, Teneriello MG, Husain A, Sovak MA, Yi J, Nycum LR (2012) OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol 30(17):2039–45CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Kurzeder C, du Bois A, Sehouli J, Kimmig R, Stähle A, Collinson F, Essapen S, Gourley C, Lortholary A, Selle F, Mirza MR, Leminen A, Plante M, Stark D, Qian W, Parmar MK, Oza AM (2011) ICON7 Investigators. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 365(26):2484–96CrossRefPubMedGoogle Scholar
  13. 13.
    Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, Mannel RS, Homesley HD, Fowler J, Greer BE, Boente M, Birrer MJ, Liang SX (2011) Gynecologic Oncology Group. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 365(26):2473–83CrossRefPubMedGoogle Scholar
  14. 14.
    Tewari KS1, Sill MW, Long HJ 3rd, Penson RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao MM, Michael HE, Monk BJ (2014) Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med 20;370(8):734–43CrossRefGoogle Scholar
  15. 15.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–91CrossRefPubMedGoogle Scholar
  17. 17.
    Wedam SB, Low JA, Yang SX, Chow CK, Choyke P, Danforth D, Hewitt SM, Berman A, Steinberg SM, Liewehr DJ, Plehn J, Doshi A, Thomasson D, McCarthy N, Koeppen H, Sherman M, Zujewski J, Camphausen K, Chen H, Swain SM (2006) Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 24(5):769–77CrossRefPubMedGoogle Scholar
  18. 18.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–74CrossRefPubMedGoogle Scholar
  19. 19.
    Mlecnik B, Bindea G, Pagès F, Galon J (2011) Tumor immunosurveillance in human cancers. Cancer Metastasis Rev 30(1):5–12CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–22CrossRefPubMedGoogle Scholar
  21. 21.
    Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–31CrossRefPubMedGoogle Scholar
  22. 22.
    Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–77CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Yang DH, Park JS, Jin CJ, Kang HK, Nam JH, Rhee JH, Kim YK, Chung SY, Choi SJ, Kim HJ, Chung IJ, Lee JJ (2009) The dysfunction and abnormal signaling pathway of dendritic cells loaded by tumor antigen can be overcome by neutralizing VEGF in multiple myeloma. Leuk Res 33(5):665–70CrossRefPubMedGoogle Scholar
  24. 24.
    Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–66PubMedGoogle Scholar
  25. 25.
    Young MR, Kolesiak K, Wright MA, Gabrilovich DI (1999) Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clin Exp Metastasis 17(10):881–8CrossRefPubMedGoogle Scholar
  26. 26.
    Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160(3):1224–32PubMedGoogle Scholar
  27. 27.
    Young MR, Kolesiak K, Wright MA, Gabrilovich DI (1999) Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clin Exp Metastasis 17(10):881–8CrossRefPubMedGoogle Scholar
  28. 28.
    Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Böhlen P (1992) Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 187(3):1579–86CrossRefPubMedGoogle Scholar
  29. 29.
    Ziegler BL, Valtieri M, Porada GA, De Maria R, Müller R, Masella B, Gabbianelli M, Casella I, Pelosi E, Bock T, Zanjani ED, Peschle C. KDR receptor: a key marker defining hematopoietic stem cells. Sci 199;285(5433):1553–8Google Scholar
  30. 30.
    Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, Nadaf S, Carbone DP (2005) Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 174(1):215–22CrossRefPubMedGoogle Scholar
  31. 31.
    Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–103CrossRefPubMedGoogle Scholar
  32. 32.
    Mimura K, Kono K, Takahashi A, Kawaguchi Y, Fujii H (2007) Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2. Cancer Immunol Immunother 56(6):761–70CrossRefPubMedGoogle Scholar
  33. 33.
    Laxmanan S, Robertson SW, Wang E, Lau JS, Briscoe DM, Mukhopadhyay D (2005) Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun 334(1):193–8CrossRefPubMedGoogle Scholar
  34. 34.
    Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101(12):4878–86CrossRefPubMedGoogle Scholar
  35. 35.
    Gavalas NG, Tsiatas M, Tsitsilonis O, Politi E, Ioannou K, Ziogas AC, Rodolakis A, Vlahos G, Thomakos N, Haidopoulos D, Terpos E, Antsaklis A, Dimopoulos MA, Bamias A (2012) VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br J Cancer 107(11):1869–75CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Basu A, Hoerning A, Datta D, Edelbauer M, Stack MP, Calzadilla K, Pal S, Briscoe DM (2010) Cutting edge: vascular endothelial growth factor-mediated signaling in human CD45RO + CD4+ T cells promotes Akt and ERK activation and costimulates IFN-gamma production. J Immunol 184(2):545–9CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Zhang J, Silva T, Yarovinsky T, Manes TD, Tavakoli S, Nie L, Tellides G, Pober JS, Bender JR, Sadeghi MM (2010) VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodelling. Circ Res 107(3):408–17CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–89CrossRefPubMedGoogle Scholar
  39. 39.
    Burrell K, Singh S1, Jalali S1, Hill RP2, Zadeh G (2014) VEGF regulates region-specific localization of perivascular bone marrow-derived cells in glioblastoma. Cancer Res 74(14):3727–39CrossRefPubMedGoogle Scholar
  40. 40.
    Suzuki H, Onishi H, Wada J, Yamasaki A, Tanaka H, Nakano K, Morisaki T, Katano M (2010) VEGFR2 is selectively expressed by FOXP3high CD4+ Treg. Eur J Immunol 40(1):197–203CrossRefPubMedGoogle Scholar
  41. 41.
    Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F, Coukos G (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumours. Nat Med 20(6):607–15CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Radisavljevic Z, Avraham H, Avraham S (2000) Vascular endothelial growth factor up-regulates ICAM-1 expression via the phosphatidylinositol 3 OH-kinase/AKT/Nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J Biol Chem 275:20770–20774CrossRefPubMedGoogle Scholar
  43. 43.
    Lee TH, Avraham H, Lee SH, Avraham S (2002) Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells. J Biol Chem 277(12):10445–51CrossRefPubMedGoogle Scholar
  44. 44.
    Ancelin M, Chollet-Martin S, Hervé MA, Legrand C, El Benna J, Perrot-Applanat M (2004) Vascular endothelial growth factor VEGF189 induces human neutrophil chemotaxis in extravascular tissue via an autocrine amplification mechanism. Lab Invest 84(4):502–12CrossRefPubMedGoogle Scholar
  45. 45.
    Christoffersson G, Vågesjö E, Vandooren J, Lidén M, Massena S, Reinert RB, Brissova M, Powers AC, Opdenakker G, Phillipson M (2012) VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 120(23):4653–62CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Podar K1, Anderson KC (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 15;105(4):1383–95CrossRefGoogle Scholar
  47. 47.
    Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK (1996) During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med 2:992–997CrossRefPubMedGoogle Scholar
  48. 48.
    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3336–3343PubMedGoogle Scholar
  49. 49.
    Samaniego F, Markham PD, Gendelman R et al (1998) Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi’s sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development. Am J Pathol 152:1433–1443PubMedCentralPubMedGoogle Scholar
  50. 50.
    Roland CL1, Dineen SP, Lynn KD, Sullivan LA, Dellinger MT, Sadegh L, Sullivan JP, Shames DS, Brekken RA (2009) Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol Cancer Ther 8(7):1761–71CrossRefPubMedGoogle Scholar
  51. 51.
    Wesolowski R, Markowitz J, Carson WE (2013) Myeloid derived suppressor cells - a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Kao J1, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH (2011) Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol 77(1):12–9CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69:1553–1560CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich D (2007) Treatment of cancer patients with VEGF-Trap overcomes defects in DC differentiation but is insufficient to improve antigen specific immune responses. Clin Cancer Res 13:4840–4848CrossRefPubMedGoogle Scholar
  55. 55.
    Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich DI (2007) Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 13(16):4840–8CrossRefPubMedGoogle Scholar
  56. 56.
    Van Cruijsen H, Hoekman K, Stam AG, van den Eertwegh AJ, Kuenen BC, Scheper RJ, Giaccone G, de Gruijl TD (2007) Defective differentiation of myeloid and plasmacytoid dendritic cells in advanced cancer patients is not normalized by tyrosine kinase inhibition of the vascular endothelial growth factor receptor. Clin Dev Immunol 2007:17315PubMedCentralPubMedGoogle Scholar
  57. 57.
    Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Huan Tu G, Prell R, VanRoey MJ, Simmons AD, Jooss K (2006) Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 12(22):6808–16CrossRefPubMedGoogle Scholar
  58. 58.
    Manzoni M, Rovati B, Ronzoni M, Loupakis F, Mariucci S, Ricci V, Gattoni E, Salvatore L, Tinelli C, Villa E, Danova M (2010) Immunological effects of bevacizumab-based treatment in metastatic colorectal cancer. Oncology 79(3–4):187–96CrossRefPubMedGoogle Scholar
  59. 59.
    Michielsen AJ, Ryan EJ, O’Sullivan JN (2012) Dendritic cell inhibition correlates with survival of colorectal cancer patients on bevacizumab treatment. Oncoimmunology 1(8):1445–1447CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Osada T1, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57(8):1115–24CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Roland CL1, Lynn KD, Toombs JE, Dineen SP, Udugamasooriya DG, Brekken RA (2009) Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS One 3;4(11):e7669CrossRefGoogle Scholar
  62. 62.
    Terme M1, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E, Taieb J (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 15;73(2):539–49CrossRefGoogle Scholar
  63. 63.
    Moniz M, Yeatermeyer J, Wu TC (2005) Control of cancers by combining antiangiogenesis and cancer immunotherapy. Drugs Today (Barc) 41(7):471–94CrossRefGoogle Scholar
  64. 64.
    Johnson BF, Clay TM, Hobeika AC, Lyerly HK, Morse MA (2007) Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther 7(4):449–60CrossRefPubMedGoogle Scholar
  65. 65.
    Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, Chevreau C, Filipek M, Melichar B, Bajetta E, Gorbunova V, Bay JO, Bodrogi I, Jagiello-Gruszfeld A, Moore N (2007) AVOREN trial investigators. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370(9605):2103–11CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yasir Y. Elamin
    • 1
  • Shereen Rafee
    • 2
  • Sinead Toomey
    • 1
  • Bryan T. Hennessy
    • 1
  1. 1.Department of Medical Oncology, Royal College of Surgeons, Beaumont HospitalDublinIreland
  2. 2.Department of Medical Oncology, St James’s HospitalDublinIreland

Personalised recommendations