Cancer Microenvironment

, Volume 8, Issue 3, pp 167–176 | Cite as

The Role of Mast Cells in Molding the Tumor Microenvironment

  • A. Rigoni
  • M. P. ColomboEmail author
  • C. Pucillo
Original Paper


Mast cells (MCs) are granulocytic immune cells that reside in tissues exposed to the external environment. MCs are best known for their activity in allergic reactions, but they have been involved in different physiological and pathological conditions. In particular, MC infiltration has been shown in several types of human tumors and in animal cancer models. Nevertheless, the role of MCs in the tumor microenvironment is still debated because they have been associated either to good or poor prognosis depending on tumor type and tissue localization. This dichotomous role relies on MC capacity to secrete a broad spectrum of molecules with modulatory functions, which may condition the final tumor outcome also promoting angiogenesis and tissue remodeling. In this review, we analyze the multifaceted role of mast cell in tumor progression and inhibition considering their ability to interact with: i) immune cells, ii) tumor cells and iii) the extracellular matrix. Eventually, the current MC targeting strategies to treat cancer patients are discussed. Deciphering the actual role of MCs in tumor onset and progression is crucial to identify MC-targeted treatments aimed at killing cancer cells or at making the tumor vulnerable to selected anti-cancer drugs.


Mast cell Cancer Immune responses Immunosuppression Extracellular matrix 



This work was supported by grants from Fondazione Cariplo (number 2010-0790) and Associazione Italiana per la Ricerca sul Cancro (AIRC: Investigator Grant number 14194 to Mario Paolo Colombo). The work of Carlo Pucillo is supported by a grant from Associazione Italiana Mastocitosi (ASIMAS). Alice Rigoni is supported by a triennial fellowship from Fondazione Italiana per la Ricerca sul Cancro (FIRC).


  1. 1.
    Erlich P (1878) Beiträge zur Theorie und Praxis der histologischen Färbung. Dissertation, Leipzig University.Google Scholar
  2. 2.
    Westphal E (1891) Uber mastzellen. Hirschwald Press, BerlinGoogle Scholar
  3. 3.
    Lachter J, Stein M, Lichtig C, Eidelman S, Munichor M (1995) Mast cells in colorectal neoplasias and premalignant disorders. Dis Colon Rectum 38(3):290–293PubMedCrossRefGoogle Scholar
  4. 4.
    Ch’ng S, Sullivan M, Yuan L, Davis P, Tan ST (2006) Mast cells dysregulate apoptotic and cell cycle genes in mucosal squamous cell carcinoma. Cancer Cell Int 6:28. doi: 10.1186/1475-2867-6-28 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Amini RM, Aaltonen K, Nevanlinna H, Carvalho R, Salonen L, Heikkila P, Blomqvist C (2007) Mast cells and eosinophils in invasive breast carcinoma. BMC Cancer 7:165. doi: 10.1186/1471-2407-7-165 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Blank U, Falcone FH, Nilsson G (2013) The history of mast cell and basophil research—some lessons learnt from the last century. Allergy 68(9):1093–1101. doi: 10.1111/all.12197 PubMedGoogle Scholar
  7. 7.
    Tsai M, Grimbaldeston M, Galli SJ (2011) Mast cells and immunoregulation/immunomodulation. Adv Exp Med Biol 716:186–211. doi: 10.1007/978-1-4419-9533-9_11 PubMedCrossRefGoogle Scholar
  8. 8.
    Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ (2007) Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev 217:304–328. doi: 10.1111/j.1600-065X.2007.00520.x PubMedCrossRefGoogle Scholar
  9. 9.
    Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9(11):1215–1223. doi: 10.1038/ni.f.216 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gurish MF, Austen KF (2012) Developmental origin and functional specialization of mast cell subsets. Immunity 37(1):25–33. doi: 10.1016/j.immuni.2012.07.003 PubMedCrossRefGoogle Scholar
  11. 11.
    Anderson DM, Lyman SD, Baird A, Wignall JM, Eisenman J, Rauch C, March CJ, Boswell HS, Gimpel SD, Cosman D et al (1990) Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 63(1):235–243PubMedCrossRefGoogle Scholar
  12. 12.
    Meininger CJ, Yano H, Rottapel R, Bernstein A, Zsebo KM, Zetter BR (1992) The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 79(4):958–963PubMedGoogle Scholar
  13. 13.
    Ulivi P, Zoli W, Medri L, Amadori D, Saragoni L, Barbanti F, Calistri D, Silvestrini R (2004) c-kit and SCF expression in normal and tumor breast tissue. Breast Cancer Res Treat 83(1):33–42. doi: 10.1023/B:BREA.0000010694.35023.9e PubMedCrossRefGoogle Scholar
  14. 14.
    Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279. doi: 10.1182/blood-2008-03-147033 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pittoni P, Tripodo C, Piconese S, Mauri G, Parenza M, Rigoni A, Sangaletti S, Colombo MP (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71(18):5987–5997. doi: 10.1158/0008-5472.CAN-11-1637 PubMedCrossRefGoogle Scholar
  16. 16.
    Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, Cunha GR, Donjacour AA, Matusik RJ, Rosen JM (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A 92(8):3439–3443PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pittoni P, Colombo MP (2012) The dark side of mast cell-targeted therapy in prostate cancer. Cancer Res 72(4):831–835. doi: 10.1158/0008-5472.CAN-11-3110 PubMedCrossRefGoogle Scholar
  18. 18.
    Irani AA, Schechter NM, Craig SS, DeBlois G, Schwartz LB (1986) Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci U S A 83(12):4464–4468PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Stone KD, Prussin C, Metcalfe DD (2010) IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125(2 Suppl 2):S73–S80. doi: 10.1016/j.jaci.2009.11.017 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25(5):235–241. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  21. 21.
    Mori A, Zhai YL, Toki T, Nikaido T, Fujii S (1997) Distribution and heterogeneity of mast cells in the human uterus. Hum Reprod 12(2):368–372PubMedCrossRefGoogle Scholar
  22. 22.
    Gelfand EW (2004) Inflammatory mediators in allergic rhinitis. J Allergy Clin Immunol 114(5 Suppl):S135–S138. doi: 10.1016/j.jaci.2004.08.043 PubMedCrossRefGoogle Scholar
  23. 23.
    Bischoff SC (2009) Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 31(2):185–205. doi: 10.1007/s00281-009-0165-4 PubMedCrossRefGoogle Scholar
  24. 24.
    Rivera J, Gilfillan AM (2006) Molecular regulation of mast cell activation. J Allergy Clin Immunol 117(6):1214–1225. doi: 10.1016/j.jaci.2006.04.015, quiz 1226PubMedCrossRefGoogle Scholar
  25. 25.
    Migalovich-Sheikhet H, Friedman S, Mankuta D, Levi-Schaffer F (2012) Novel identified receptors on mast cells. Front Immunol 3:238. doi: 10.3389/fimmu.2012.00238 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Karra L, Levi-Schaffer F (2011) Down-regulation of mast cell responses through ITIM containing inhibitory receptors. Adv Exp Med Biol 716:143–159. doi: 10.1007/978-1-4419-9533-9_9 PubMedCrossRefGoogle Scholar
  27. 27.
    Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561. doi: 10.1146/annurev.pharmtox.40.1.519 PubMedCrossRefGoogle Scholar
  28. 28.
    Matsumoto Y, Ide F, Kishi R, Akutagawa T, Sakai S, Nakamura M, Ishikawa T, Fujii-Kuriyama Y, Nakatsuru Y (2007) Aryl hydrocarbon receptor plays a significant role in mediating airborne particulate-induced carcinogenesis in mice. Environ Sci Technol 41(10):3775–3780PubMedCrossRefGoogle Scholar
  29. 29.
    Lin P, Chang H, Ho WL, Wu MH, Su JM (2003) Association of aryl hydrocarbon receptor and cytochrome P4501B1 expressions in human non-small cell lung cancers. Lung Cancer 42(3):255–261PubMedCrossRefGoogle Scholar
  30. 30.
    Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw ML, Pettersson S, Hanberg A, Poellinger L (2002) A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci U S A 99(15):9990–9995. doi: 10.1073/pnas.152706299 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Moennikes O, Loeppen S, Buchmann A, Andersson P, Ittrich C, Poellinger L, Schwarz M (2004) A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res 64(14):4707–4710. doi: 10.1158/0008-5472.CAN-03-0875 PubMedCrossRefGoogle Scholar
  32. 32.
    Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, MacDonald TT, Pallone F, Monteleone G (2011) Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 141(1):237–248, 248 e231. doi: 10.1053/j.gastro.2011.04.007 PubMedCrossRefGoogle Scholar
  33. 33.
    Monteleone I, Pallone F, Monteleone G (2013) Aryl hydrocarbon receptor and colitis. Semin Immunopathol 35(6):671–675. doi: 10.1007/s00281-013-0396-2 PubMedCrossRefGoogle Scholar
  34. 34.
    Sibilano R, Frossi B, Calvaruso M, Danelli L, Betto E, Dall’Agnese A, Tripodo C, Colombo MP, Pucillo CE, Gri G (2012) The aryl hydrocarbon receptor modulates acute and late mast cell responses. J Immunol 189(1):120–127. doi: 10.4049/jimmunol.1200009 PubMedCrossRefGoogle Scholar
  35. 35.
    Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D (2007) Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 217:65–78. doi: 10.1111/j.1600-065X.2007.00519.x PubMedCrossRefGoogle Scholar
  36. 36.
    Jutel M, Watanabe T, Klunker S, Akdis M, Thomet OA, Malolepszy J, Zak-Nejmark T, Koga R, Kobayashi T, Blaser K, Akdis CA (2001) Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413(6854):420–425. doi: 10.1038/35096564 PubMedCrossRefGoogle Scholar
  37. 37.
    Elenkov IJ, Webster E, Papanicolaou DA, Fleisher TA, Chrousos GP, Wilder RL (1998) Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J Immunol 161(5):2586–2593PubMedGoogle Scholar
  38. 38.
    Morgan RK, McAllister B, Cross L, Green DS, Kornfeld H, Center DM, Cruikshank WW (2007) Histamine 4 receptor activation induces recruitment of FoxP3+ T cells and inhibits allergic asthma in a murine model. J Immunol 178(12):8081–8089PubMedCrossRefGoogle Scholar
  39. 39.
    Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, Buschauer A (2013) Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 34(1):33–58. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  40. 40.
    Medina VA, Rivera ES (2010) Histamine receptors and cancer pharmacology. Br J Pharmacol 161(4):755–767. doi: 10.1111/j.1476-5381.2010.00961.x PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gri G, Piconese S, Frossi B, Manfroi V, Merluzzi S, Tripodo C, Viola A, Odom S, Rivera J, Colombo MP, Pucillo CE (2008) CD4 + CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29(5):771–781. doi: 10.1016/j.immuni.2008.08.018 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Piconese S, Gri G, Tripodo C, Musio S, Gorzanelli A, Frossi B, Pedotti R, Pucillo CE, Colombo MP (2009) Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114(13):2639–2648. doi: 10.1182/blood-2009-05-220004 PubMedCrossRefGoogle Scholar
  43. 43.
    Souza HS, Elia CC, Spencer J, MacDonald TT (1999) Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 45(6):856–863PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Malmstrom V, Shipton D, Singh B, Al-Shamkhani A, Puklavec MJ, Barclay AN, Powrie F (2001) CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 166(11):6972–6981PubMedCrossRefGoogle Scholar
  45. 45.
    de Vries VC, Wasiuk A, Bennett KA, Benson MJ, Elgueta R, Waldschmidt TJ, Noelle RJ (2009) Mast cell degranulation breaks peripheral tolerance. Am J Transplant 9(10):2270–2280. doi: 10.1111/j.1600-6143.2009.02755.x PubMedCrossRefGoogle Scholar
  46. 46.
    Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ (2005) Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167(3):835–848. doi: 10.1016/S0002-9440(10)62055-X PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Colombo MP, Piconese S (2009) Polyps wrap mast cells and Treg within tumorigenic tentacles. Cancer Res 69(14):5619–5622. doi: 10.1158/0008-5472.CAN-09-1351 PubMedCrossRefGoogle Scholar
  48. 48.
    Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, Lee DM, Zhang G, Glickman JN, Shin K, Rao VP, Poutahidis T, Weissleder R, McNagny KM, Khazaie K (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 104(50):19977–19982. doi: 10.1073/pnas.0704620104 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gounaris E, Blatner NR, Dennis K, Magnusson F, Gurish MF, Strom TB, Beckhove P, Gounari F, Khazaie K (2009) T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res 69(13):5490–5497. doi: 10.1158/0008-5472.CAN-09-0304 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, Roers A, Weaver CT, Lee JJ, Gilbert JA, Chang EB, Khazaie K (2013) Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res 73(19):5905–5913. doi: 10.1158/0008-5472.CAN-13-1511 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cheon EC, Khazaie K, Khan MW, Strouch MJ, Krantz SB, Phillips J, Blatner NR, Hix LM, Zhang M, Dennis KL, Salabat MR, Heiferman M, Grippo PJ, Munshi HG, Gounaris E, Bentrem DJ (2011) Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCDelta468 mice. Cancer Res 71(5):1627–1636. doi: 10.1158/0008-5472.CAN-10-1923 PubMedCrossRefGoogle Scholar
  52. 52.
    Saleem SJ, Martin RK, Morales JK, Sturgill JL, Gibb DR, Graham L, Bear HD, Manjili MH, Ryan JJ, Conrad DH (2012) Cutting edge: mast cells critically augment myeloid-derived suppressor cell activity. J Immunol 189(2):511–515. doi: 10.4049/jimmunol.1200647 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, Zanovello P (2009) IL4Ralpha + myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182(10):6562–6568. doi: 10.4049/jimmunol.0803831 PubMedCrossRefGoogle Scholar
  54. 54.
    Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX, Huang B (2010) Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS One 5(1):e8922. doi: 10.1371/journal.pone.0008922 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Molin D, Edstrom A, Glimelius I, Glimelius B, Nilsson G, Sundstrom C, Enblad G (2002) Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br J Haematol 119(1):122–124PubMedCrossRefGoogle Scholar
  56. 56.
    Franco G, Guarnotta C, Frossi B, Piccaluga PP, Boveri E, Gulino A, Fuligni F, Rigoni A, Porcasi R, Buffa S, Betto E, Florena AM, Franco V, Iannitto E, Arcaini L, Pileri SA, Pucillo C, Colombo MP, Sangaletti S, Tripodo C (2014) Bone marrow stroma CD40 expression correlates with inflammatory mast cell infiltration and disease progression in splenic marginal zone lymphoma. Blood. doi: 10.1182/blood-2013-04-497271 PubMedGoogle Scholar
  57. 57.
    Hedstrom G, Berglund M, Molin D, Fischer M, Nilsson G, Thunberg U, Book M, Sundstrom C, Rosenquist R, Roos G, Erlanson M, Amini RM, Enblad G (2007) Mast cell infiltration is a favourable prognostic factor in diffuse large B-cell lymphoma. Br J Haematol 138(1):68–71. doi: 10.1111/j.1365-2141.2007.06612.x PubMedCrossRefGoogle Scholar
  58. 58.
    Tripodo C, Gri G, Piccaluga PP, Frossi B, Guarnotta C, Piconese S, Franco G, Vetri V, Pucillo CE, Florena AM, Colombo MP, Pileri SA (2010) Mast cells and Th17 cells contribute to the lymphoma-associated pro-inflammatory microenvironment of angioimmunoblastic T-cell lymphoma. Am J Pathol 177(2):792–802. doi: 10.2353/ajpath.2010.091286 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rabenhorst A, Schlaak M, Heukamp LC, Forster A, Theurich S, von Bergwelt-Baildon M, Buttner R, Kurschat P, Mauch C, Roers A, Hartmann K (2012) Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood 120(10):2042–2054. doi: 10.1182/blood-2012-03-415638 PubMedCrossRefGoogle Scholar
  60. 60.
    Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, Yang X, Knowles S, Horn W, Li Y, Zhang S, Yang Y, Vakili ST, Yu M, Burns D, Robertson K, Hutchins G, Parada LF, Clapp DW (2008) Nf1-dependent tumors require a microenvironment containing Nf1+/-- and c-kit-dependent bone marrow. Cell 135(3):437–448. doi: 10.1016/j.cell.2008.08.041 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Baratelli F, Le M, Gershman GB, French SW (2014) Do mast cells play a pathogenetic role in neurofibromatosis type 1 and ulcerative colitis? Exp Mol Pathol 96(2):230–234. doi: 10.1016/j.yexmp.2014.02.006 PubMedCrossRefGoogle Scholar
  62. 62.
    Eaden J (2004) Review article: colorectal carcinoma and inflammatory bowel disease. Aliment Pharmacol Ther 20(Suppl 4):24–30. doi: 10.1111/j.1365-2036.2004.02046.x PubMedCrossRefGoogle Scholar
  63. 63.
    Heijmans J, Buller NV, Muncan V, van den Brink GR (2012) Role of mast cells in colorectal cancer development, the jury is still out. Biochim Biophys Acta 1822(1):9–13. doi: 10.1016/j.bbadis.2010.12.001 PubMedCrossRefGoogle Scholar
  64. 64.
    Chichlowski M, Westwood GS, Abraham SN, Hale LP (2010) Role of mast cells in inflammatory bowel disease and inflammation-associated colorectal neoplasia in IL-10-deficient mice. PLoS One 5(8):e12220. doi: 10.1371/journal.pone.0012220 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Khan MW, Keshavarzian A, Gounaris E, Melson JE, Cheon EC, Blatner NR, Chen ZE, Tsai FN, Lee G, Ryu H, Barrett TA, Bentrem DJ, Beckhove P, Khazaie K (2013) PI3K/AKT signaling is essential for communication between tissue-infiltrating mast cells, macrophages, and epithelial cells in colitis-induced cancer. Clin Cancer Res 19(9):2342–2354. doi: 10.1158/1078-0432.CCR-12-2623 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kim YJ, Hong KS, Chung JW, Kim JH, Hahm KB (2010) Prevention of colitis-associated carcinogenesis with infliximab. Cancer Prev Res (Phila) 3(10):1314–1333. doi: 10.1158/1940-6207.CAPR-09-0272 CrossRefGoogle Scholar
  67. 67.
    Gulubova M, Vlaykova T (2009) Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol 24(7):1265–1275. doi: 10.1111/j.1440-1746.2007.05009.x PubMedCrossRefGoogle Scholar
  68. 68.
    Malfettone A, Silvestris N, Saponaro C, Ranieri G, Russo A, Caruso S, Popescu O, Simone G, Paradiso A, Mangia A (2013) High density of tryptase-positive mast cells in human colorectal cancer: a poor prognostic factor related to protease-activated receptor 2 expression. J Cell Mol Med 17(8):1025–1037. doi: 10.1111/jcmm.12073 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Frossi B, Gri G, Tripodo C, Pucillo C (2010) Exploring a regulatory role for mast cells: ‘MCregs’? Trends Immunol 31(3):97–102. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  70. 70.
    Schmidt DR, Kao WJ (2007) The interrelated role of fibronectin and interleukin-1 in biomaterial-modulated macrophage function. Biomaterials 28(3):371–382. doi: 10.1016/j.biomaterials.2006.08.041 PubMedCrossRefGoogle Scholar
  71. 71.
    Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354. doi: 10.1038/nature12626 PubMedCrossRefGoogle Scholar
  72. 72.
    Lilla JN, Werb Z (2010) Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev Biol 337(1):124–133. doi: 10.1016/j.ydbio.2009.10.021 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yoshii M, Jikuhara A, Mori S, Iwagaki H, Takahashi HK, Nishibori M, Tanaka N (2005) Mast cell tryptase stimulates DLD-1 carcinoma through prostaglandin- and MAP kinase-dependent manners. J Pharmacol Sci 98(4):450–458PubMedCrossRefGoogle Scholar
  74. 74.
    Abdel-Majid RM, Marshall JS (2004) Prostaglandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells. J Immunol 172(2):1227–1236PubMedCrossRefGoogle Scholar
  75. 75.
    Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11):1382–1397PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Harvima IT, Levi-Schaffer F, Draber P, Friedman S, Polakovicova I, Gibbs BF, Blank U, Nilsson G, Maurer M (2014) Molecular targets on mast cells and basophils for novel therapies. J Allergy Clin Immunol. doi: 10.1016/j.jaci.2014.03.007 PubMedGoogle Scholar
  77. 77.
    Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154. doi: 10.1111/j.1600-065X.2007.00509.x PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Coussens LM, Shapiro SD, Soloway PD, Werb Z (2001) Models for gain-of-function and loss-of-function of MMPs. Transgenic and gene targeted mice. Methods Mol Biol 151:149–179PubMedGoogle Scholar
  79. 79.
    Shi ZG, Li JP, Shi LL, Li X (2012) An updated patent therapeutic agents targeting MMPs. Recent Pat Anticancer Drug Discov 7(1):74–101PubMedCrossRefGoogle Scholar
  80. 80.
    Oka T, Kalesnikoff J, Starkl P, Tsai M, Galli SJ (2012) Evidence questioning cromolyn’s effectiveness and selectivity as a ‘mast cell stabilizer’ in mice. Lab Invest 92(10):1472–1482. doi: 10.1038/labinvest.2012.116 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13(10):1211–1218. doi: 10.1038/nm1649 PubMedCrossRefGoogle Scholar
  82. 82.
    Pierotti MA, Tamborini E, Negri T, Pricl S, Pilotti S (2011) Targeted therapy in GIST: in silico modeling for prediction of resistance. Nat Rev Clin Oncol 8(3):161–170. doi: 10.1038/nrclinonc.2011.3 PubMedCrossRefGoogle Scholar
  83. 83.
    Ribatti D, Crivellato E (2011) Mast cells and tumors: from biology to clinic. In: Springer (ed) Mast cells and tumors: from biology to clinic.Google Scholar
  84. 84.
    Pittoni P, Piconese S, Tripodo C, Colombo MP (2011) Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene 30(7):757–769. doi: 10.1038/onc.2010.494 PubMedCrossRefGoogle Scholar
  85. 85.
    Rajput AB, Turbin DA, Cheang MC, Voduc DK, Leung S, Gelmon KA, Gilks CB, Huntsman DG (2008) Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases. Breast Cancer Res Treat 107(2):249–257. doi: 10.1007/s10549-007-9546-3 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wang B, Li L, Liao Y, Li J, Yu X, Zhang Y, Xu J, Rao H, Chen S, Zhang L, Zheng L (2013) Mast cells expressing interleukin 17 in the muscularis propria predict a favorable prognosis in esophageal squamous cell carcinoma. Cancer Immunol Immunother: CII 62(10):1575–1585. doi: 10.1007/s00262-013-1460-4 PubMedCrossRefGoogle Scholar
  87. 87.
    Fakhrjou A, Niroumand-Oscoei SM, Somi MH, Ghojazadeh M, Naghashi S, Samankan S (2013) Prognostic Value of Tumor-Infiltrating Mast Cells in Outcome of Patients with Esophagus Squamous Cell Carcinoma. J Gastrointest Cancer. doi: 10.1007/s12029-013-9550-2 Google Scholar
  88. 88.
    Ammendola M, Sacco R, Donato G, Zuccala V, Russo E, Luposella M, Vescio G, Rizzuto A, Patruno R, De Sarro G, Montemurro S, Sammarco G, Ranieri G (2013) Mast cell positivity to tryptase correlates with metastatic lymph nodes in gastrointestinal cancer patients treated surgically. Oncology 85(2):111–116. doi: 10.1159/000351145 PubMedCrossRefGoogle Scholar
  89. 89.
    Chen L, Zhang Q, Chang W, Du Y, Zhang H, Cao G (2012) Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma. Eur J Cancer 48(13):1977–1987. doi: 10.1016/j.ejca.2012.01.015 PubMedCrossRefGoogle Scholar
  90. 90.
    Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P (2005) Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23(35):8959–8967. doi: 10.1200/JCO.2005.01.4910 PubMedCrossRefGoogle Scholar
  91. 91.
    Imada A, Shijubo N, Kojima H, Abe S (2000) Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 15(6):1087–1093PubMedCrossRefGoogle Scholar
  92. 92.
    Takanami I, Takeuchi K, Naruke M (2000) Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 88(12):2686–2692PubMedCrossRefGoogle Scholar
  93. 93.
    Duncan LM, Richards LA, Mihm MC Jr (1998) Increased mast cell density in invasive melanoma. J Cutan Pathol 25(1):11–15PubMedCrossRefGoogle Scholar
  94. 94.
    Ribatti D, Ennas MG, Vacca A, Ferreli F, Nico B, Orru S, Sirigu P (2003) Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur J Clin Investig 33(5):420–425CrossRefGoogle Scholar
  95. 95.
    Esposito I, Menicagli M, Funel N, Bergmann F, Boggi U, Mosca F, Bevilacqua G, Campani D (2004) Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 57(6):630–636PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Strouch MJ, Cheon EC, Salabat MR, Krantz SB, Gounaris E, Melstrom LG, Dangi-Garimella S, Wang E, Munshi HG, Khazaie K, Bentrem DJ (2010) Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res 16(8):2257–2265. doi: 10.1158/1078-0432.CCR-09-1230 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Cai SW, Yang SZ, Gao J, Pan K, Chen JY, Wang YL, Wei LX, Dong JH (2011) Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery 149(4):576–584. doi: 10.1016/j.surg.2010.10.009 PubMedCrossRefGoogle Scholar
  98. 98.
    Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, Jones J, Stattin P, Egevad L, Granfors T, Wikstrom P, Bergh A (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177(2):1031–1041. doi: 10.2353/ajpath.2010.100070 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Molecular Immunology Unit, Department of Experimental Oncology and Molecular MedicineFondazione IRCCS Istituto Nazionale TumoriMilanItaly
  2. 2.Department of Medical and Biological SciencesUniversity of UdineUdineItaly

Personalised recommendations