Advertisement

Cancer Microenvironment

, Volume 8, Issue 1, pp 1–14 | Cite as

Tumor-driven Molecular Changes in Human Mesenchymal Stromal Cells

  • Lucia KucerovaEmail author
  • Jakub Zmajkovic
  • Lenka Toro
  • Svetlana Skolekova
  • Lucia Demkova
  • Miroslava Matuskova
Original Paper

Abstract

Mesenchymal stromal cells (MSC) exert either tumor-stimulatory or tumor-inhibitory effect. The outcome of the tumor-MSC interaction is dictated by the tumor-specific activating signals. We analyzed the alterations in MSC phenotype in response to stimulation by tumor-secreted paracrine factors. Paracrine factors from human melanoma A375 and glioblastoma 8MGBA cells were used for prolonged culture of MSC to produce derived cells designated DIFF(A)-MSC or DIFF(G)-MSC, respectively. Derived cells were analyzed for the specific surface markers, the expression pattern of MSC markers and fibroblast-specific proteins. Changes in the cell phenotype were evaluated using scratch wound assay and tube formation in vitro; and xenotransplant growth in vivo. Our data show induced expression of vascular endothelial growth factor 2, CD146, fibroblast-specific protein, vimentin and endosialin in DIFF(A)-MSC cells. This indicates their differentiation towards the cells with features of tumor-associated fibroblasts upon stimulation with melanoma-secreted cytokines. Paracrine stimulation in DIFF(G)-MSC led to up-regulation of the genes involved in the MSC differentiation. MSC-specific surface marker characteristics were preserved in derived DIFF(A)-MSC and DIFF(G)-MSC cells. However, we observed increased proportion of CD146 and GD2 (neural ganglioside) positive cells and decreased expression of marker NG2 in the MSC exposed to tumor-conditioned medium. Melanoma-CM increased MSC migration, glioblastoma-CM compromised angiogenic capacity of MSC in vitro and the protumorigenic effect in vivo. Our data directly compare the pleiotropic effects mediated by the malignant cells on the MSC. Secreted paracrine factors from melanoma or glioblastoma differently changed molecular traits in MSC, which explains the dual role of MSC in tumor growth.

Keywords

Human mesenchymal stromal cells Differentiation Melanoma Glioblastoma Tumor-associated fibroblasts 

Abbreviations

ALCAM

Activated leukocyte cell adhesion molecule

αSMA

α-smooth muscle actin

BCRP1

ATP-binding cassette, sub-family G, ABCG2

CCL5

RANTES chemokine

CCR5

Receptor for CCL5 (RANTES)

cKit

SCF receptor

CXCR3

CXCL10 receptor

CXCR4

SDF1α (CXCL12) receptor

EGFR

Epidermal growth factor receptor

ELISA

Enzyme-linked immunosorbent assay

FAP

Fibroblast-activating protein

FBS

Foetal bovine serum

FSP

Fibroblast specific protein

GAPDH

Glyceraldehyde 3-phosphate dehydrogenase

G-CSF

Granulocyte-colony stimulating factor

GD2

Neural ganglioside

GM-CSF

Granulocyte monocyte-colony stimulating factor

HGF

Hepatocyte growth factor

HPRT1

Hypoxantine-guanine phosphoribosyl transferase

IFNγ

Interferon γ

IL

Interleukin

IP-10

Chemokine (C-X-C motif) ligand 10, CXCL10

mCAM

Melanoma cell adhesion molecule, CD146

MCP-1 (CCL2)

Monocyte chemoattractant protein-1, chemokine CCL2

MIP-1a (CCL3)

Macrophage inflammatory protein-1alpha

MIP-1b (CCL4)

Macrophage inflammatory protein-1beta

MSC

mesenchymal stromal cells

PDGF-bb

Platelet-derived growth factor

RANTES (CCL5)

Regulated on activation, normal T-cell expressed and secreted

SCF

Stem cell factor

SDF1α

Stroma-derived factor 1α, chemokine CXCL12

TNFα

Tumor necrosis factor α

TAF

Tumor associated fibroblasts

TCM

Tumor cell-conditioned medium

VCAM1

Vascular cell adhesion molecule 1

VEGF

Vascular endothelial growth factor

VEGFR

VEGF receptor

Notes

Acknowledgments

We acknowledge the excellent technical help and assistance from M. Dubrovcakova and V. Frivalska. We acknowledge K. Zmajkovicova, PhD, for the kind help with the confocal microscopy. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0230-11, APVV-0052-12, VEGA grants 2/0088/11 and 2/0171/13. The experiments on the CFX96™ Real-Time PCR Detection System and the IncuCyte ZOOM™ were enabled with the kind help and the financial support from the Cancer Research Foundation RFL2009 and RFL2012.

Conflict of Interest

The authors declare no conflict of interest.

Authors Contributions

Conception, design and development of methodology: LK, JZ; data acquisition LK, JZ, SS, LD, LB, MM; analysis and data interpretation LK, JZ, MM; writing of the manuscript and review: LK, JZ. All authors have read and approved the final version of the manuscript.

Supplementary material

12307_2014_151_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb)

References

  1. 1.
    Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. doi: 10.1016/j.ccr.2012.02.022 CrossRefPubMedGoogle Scholar
  2. 2.
    Kucerova L, Skolekova S (2013) Tumor microenvironment and the role of mesenchymal stromal cells. Neoplasma 60(1):1–10. doi: 10.4149/neo_2013_001 CrossRefPubMedGoogle Scholar
  3. 3.
    Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Battula VL, Weil M, Andreeff M, Marini FC (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27(10):2614–2623. doi: 10.1002/stem.187 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M, Marini FC (2012) Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One 7(2):e30563. doi: 10.1371/journal.pone.0030563 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716. doi: 10.1016/j.stem.2012.05.015 CrossRefPubMedGoogle Scholar
  6. 6.
    Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12(5):383–396. doi: 10.1038/nri3209 CrossRefPubMedGoogle Scholar
  7. 7.
    Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4(4):e4992. doi: 10.1371/journal.pone.0004992 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68(11):4331–4339. doi: 10.1158/0008-5472.CAN-08-0943 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Xouri G, Christian S (2010) Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol 21(1):40–46. doi: 10.1016/j.semcdb.2009.11.017 CrossRefPubMedGoogle Scholar
  10. 10.
    Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr Opin Genet Dev 19(1):67–73. doi: 10.1016/j.gde.2009.01.003 CrossRefPubMedGoogle Scholar
  11. 11.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401. doi: 10.1038/nrc1877 CrossRefPubMedGoogle Scholar
  12. 12.
    Hass R, Otte A (2012) Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun Signal 10(1):26. doi: 10.1186/1478-811X-10-26 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P (2013) Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta 1836(2):321–335. doi: 10.1016/j.bbcan.2013.10.004 PubMedGoogle Scholar
  14. 14.
    Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C (2010) Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 9:129. doi: 10.1186/1476-4598-9-129 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Li HJ, Reinhardt F, Herschman HR, Weinberg RA (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2(9):840–855. doi: 10.1158/2159-8290.CD-12-0101 CrossRefPubMedGoogle Scholar
  16. 16.
    Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F 3rd (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29(1):11–19. doi: 10.1002/stem.559 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67(13):6304–6313. doi: 10.1158/0008-5472.CAN-06-4024 CrossRefPubMedGoogle Scholar
  18. 18.
    Kucerova L, Kovacovicova M, Polak S, Bohac M, Fedeles J, Palencar D, Matuskova M (2011) Interaction of human adipose tissue-derived mesenchymal stromal cells with breast cancer cells. Neoplasma 58(5):361–370CrossRefPubMedGoogle Scholar
  19. 19.
    Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z (2013) Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC Cancer 13(1):535. doi: 10.1186/1471-2407-13-535 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109(10):4245–4248. doi: 10.1182/blood-2006-08-039347 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Kucerova L, Matuskova M, Hlubinova K, Bohovic R, Feketeova L, Janega P, Babal P, Poturnajova M (2011) Bystander cytotoxicity in human medullary thyroid carcinoma cells mediated by fusion yeast cytosine deaminase and 5-fluorocytosine. Cancer Lett 311(1):101–112. doi: 10.1016/j.canlet.2011.07.014 CrossRefPubMedGoogle Scholar
  22. 22.
    Baek SJ, Kang SK, Ra JC (2011) In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp Mol Med 43(10):596–603. doi: 10.3858/emm.2011.43.10.069 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Brooke G, Tong H, Levesque JP, Atkinson K (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 17(5):929–940. doi: 10.1089/scd.2007.0156 CrossRefPubMedGoogle Scholar
  24. 24.
    Shin SY, Nam JS, Lim Y, Lee YH (2010) TNFalpha-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. J Biol Chem 285(40):30731–30740. doi: 10.1074/jbc.M110.128124 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Rattigan Y, Hsu JM, Mishra PJ, Glod J, Banerjee D (2010) Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res 316(20):3417–3424. doi: 10.1016/j.yexcr.2010.07.002 CrossRefPubMedGoogle Scholar
  26. 26.
    Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung Y, Dontu G, Taichman R, Wicha MS (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624. doi: 10.1158/0008-5472.CAN-10-0538 CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Senst C, Nazari-Shafti T, Kruger S, Honer Zu Bentrup K, Dupin CL, Chaffin AE, Srivastav SK, Worner PM, Abdel-Mageed AB, Alt EU, Izadpanah R (2013) Prospective dual role of mesenchymal stem cells in breast tumor microenvironment. Breast Cancer Res Treat 137(1):69–79. doi: 10.1007/s10549-012-2321-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Chaturvedi P, Gilkes DM, Wong CC, Luo W, Zhang H, Wei H, Takano N, Schito L, Levchenko A, Semenza GL (2013) Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest 123(1):189–205. doi: 10.1172/JCI64993 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563. doi: 10.1038/nature06188 CrossRefPubMedGoogle Scholar
  30. 30.
    Muehlberg FL, Song YH, Krohn A, Pinilla SP, Droll LH, Leng X, Seidensticker M, Ricke J, Altman AM, Devarajan E, Liu W, Arlinghaus RB, Alt EU (2009) Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis 30(4):589–597. doi: 10.1093/carcin/bgp036 CrossRefPubMedGoogle Scholar
  31. 31.
    Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, Scheding S, Bengzon J (2009) Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 17(1):183–190. doi: 10.1038/mt.2008.229 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Desai VD, Hsia HC, Schwarzbauer JE (2014) Reversible modulation of myofibroblast differentiation in adipose-derived mesenchymal stem cells. PLoS One 9(1):e86865. doi: 10.1371/journal.pone.0086865 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Ronnov-Jessen L, Petersen OW (1996) A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts. J Cell Biol 134(1):67–80CrossRefPubMedGoogle Scholar
  34. 34.
    Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646CrossRefPubMedGoogle Scholar
  35. 35.
    Bagley RG, Weber W, Rouleau C, Yao M, Honma N, Kataoka S, Ishida I, Roberts BL, Teicher BA (2009) Human mesenchymal stem cells from bone marrow express tumor endothelial and stromal markers. Int J Oncol 34(3):619–627CrossRefPubMedGoogle Scholar
  36. 36.
    Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J, Umezawa A, Kijima H, Fukuda S, Saijo Y (2011) Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med 17(7–8):579–587. doi: 10.2119/molmed.2010.00157 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS (2009) Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem 108(3):577–588. doi: 10.1002/jcb.22289 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Korkaya H, Wicha MS (2013) Breast cancer stem cells: we’ve got them surrounded. Clin Cancer Res 19(3):511–513. doi: 10.1158/1078-0432.CCR-12-3450 CrossRefPubMedGoogle Scholar
  39. 39.
    Schmitt E, Bopp T (2012) Amazing IL-9: revealing a new function for an “old” cytokine. J Clin Invest 122(11):3857–3859. doi: 10.1172/JCI65929 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648. doi: 10.1016/j.jcyt.2013.02.006 CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Furukawa S, Soeda S, Kiko Y, Suzuki O, Hashimoto Y, Watanabe T, Nishiyama H, Tasaki K, Hojo H, Abe M, Fujimori K (2013) MCP-1 promotes invasion and adhesion of human ovarian cancer cells. Anticancer Res 33(11):4785–4790PubMedGoogle Scholar
  42. 42.
    Jin HJ, Nam HY, Bae YK, Kim SY, Im IR, Oh W, Yang YS, Choi SJ, Kim SW (2010) GD2 expression is closely associated with neuronal differentiation of human umbilical cord blood-derived mesenchymal stem cells. Cell Mol Life Sci CMLS 67(11):1845–1858. doi: 10.1007/s00018-010-0292-z CrossRefGoogle Scholar
  43. 43.
    Cook D, Genever P (2013) Regulation of mesenchymal stem cell differentiation. Adv Exp Med Biol 786:213–229. doi: 10.1007/978-94-007-6621-1_12 PubMedGoogle Scholar
  44. 44.
    Oldershaw RA, Hardingham TE (2010) Notch signaling during chondrogenesis of human bone marrow stem cells. Bone 46(2):286–293. doi: 10.1016/j.bone.2009.04.242 CrossRefPubMedGoogle Scholar
  45. 45.
    Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, Agrawal S, Schaffer DV, Li S (2010) Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28(4):734–742. doi: 10.1002/stem.319 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lucia Kucerova
    • 1
    Email author
  • Jakub Zmajkovic
    • 1
    • 2
  • Lenka Toro
    • 1
  • Svetlana Skolekova
    • 1
  • Lucia Demkova
    • 1
  • Miroslava Matuskova
    • 1
  1. 1.Laboratory of Molecular Oncology, Cancer Research InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Arsanis Biosciences GmbHViennaAustria

Personalised recommendations