Cancer Microenvironment

, Volume 5, Issue 3, pp 261–273 | Cite as

Lysyl Oxidase, Extracellular Matrix Remodeling and Cancer Metastasis

  • Qian Xiao
  • Gaoxiang GeEmail author
Original Paper


Lysyl oxidase (LOX) family oxidases, LOX and LOXL1-4, oxidize lysine residues in collagens and elastin, resulting in the covalent crosslinking and stabilization of these extracellular matrix (ECM) structural components, thus provide collagen and elastic fibers much of their tensile strength and structural integrity. Abnormality in LOX expression and/or activity results in connective tissue disorders and fibrotic diseases. Despite LOX family oxidases have been reported to function as tumor suppressors, recent studies have highlighted the roles of LOX family oxidases in promoting cancer metastasis. LOX family oxidases are highly expressed in invasive tumors, and are closely associated with metastasis and poor patient outcome. Consistent to their roles in connective tissue homeostasis, LOX family oxidases expedite tumorigenesis and metastasis through active remodeling of tumor microenvironment. LOX family oxidases are also actively involved in the process of epithelial-mesenchymal transition (EMT), an event critical in cancer cell invasion and metastasis. In this review, we will summarize the recent progress on LOX family oxidases, with much of the focus on the roles and mechanism of LOX in tumor progression and metastasis.


Lysyl oxidase (LOX) Metastasis Desmoplasia Hypoxia-inducible factor (HIF) Epithelial-Mesenchymal Transition (EMT) 



This work was supported by the National Basic Research Program of China (2010CB912102) and National Natural Science Foundation of China (30971495). G.G. is a scholar of the Hundred Talents Program of the Chinese Academy of Sciences.

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  2. 2.
    Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev 9(8):628–638CrossRefGoogle Scholar
  3. 3.
    Araya J, Nishimura SL (2010) Fibrogenic reactions in lung disease. Annu Rev Pathol 5:77–98PubMedCrossRefGoogle Scholar
  4. 4.
    Rodriguez C, Rodriguez-Sinovas A, Martinez-Gonzalez J (2008) Lysyl oxidase as a potential therapeutic target. Drug News Perspect 21(4):218–224. doi: 10.1358/dnp.2008.21.4.1213351 PubMedCrossRefGoogle Scholar
  5. 5.
    Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM, Oyasu M, Mikels A, Vaysberg M, Ghermazien H, Wai C, Garcia CA, Velayo AC, Jorgensen B, Biermann D, Tsai D, Green J, Zaffryar-Eilot S, Holzer A, Ogg S, Thai D, Neufeld G, Van Vlasselaer P, Smith V (2010) Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16(9):1009–1017PubMedCrossRefGoogle Scholar
  6. 6.
    Kagan HM (2000) Intra- and extracellular enzymes of collagen biosynthesis as biological and chemical targets in the control of fibrosis. Acta Trop 77(1):147–152PubMedCrossRefGoogle Scholar
  7. 7.
    Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226PubMedCrossRefGoogle Scholar
  8. 8.
    Gao Y, Xiao Q, Ma H, Li L, Liu J, Feng Y, Fang Z, Wu J, Han X, Zhang J, Sun Y, Wu G, Padera R, Chen H, Wong KK, Ge G, Ji H (2010) LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc Natl Acad Sci USA 107(44):18892–18897. doi: 10.1073/pnas.1004952107 PubMedCrossRefGoogle Scholar
  9. 9.
    Payne SL, Hendrix MJ, Kirschmann DA (2007) Paradoxical roles for lysyl oxidases in cancer–a prospect. J Cell Biochem 101(6):1338–1354PubMedCrossRefGoogle Scholar
  10. 10.
    Lucero HA, Kagan HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63(19–20):2304–2316PubMedCrossRefGoogle Scholar
  11. 11.
    Ge G, Greenspan DS (2006) Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res C Embryo Today 78(1):47–68. doi: 10.1002/bdrc.20060 PubMedCrossRefGoogle Scholar
  12. 12.
    Uzel MI, Scott IC, Babakhanlou-Chase H, Palamakumbura AH, Pappano WN, Hong HH, Greenspan DS, Trackman PC (2001) Multiple bone morphogenetic protein 1-related mammalian metalloproteinases process pro-lysyl oxidase at the correct physiological site and control lysyl oxidase activation in mouse embryo fibroblast cultures. J Biol Chem 276(25):22537–22543. doi: 10.1074/jbc.M102352200 PubMedCrossRefGoogle Scholar
  13. 13.
    Borel A, Eichenberger D, Farjanel J, Kessler E, Gleyzal C, Hulmes DJ, Sommer P, Font B (2001) Lysyl oxidase-like protein from bovine aorta. Isolation and maturation to an active form by bone morphogenetic protein-1. J Biol Chem 276(52):48944–48949. doi: 10.1074/jbc.M109499200 PubMedCrossRefGoogle Scholar
  14. 14.
    Kagan HM, Williams MA, Calaman SD, Berkowitz EM (1983) Histone H1 is a substrate for lysyl oxidase and contains endogenous sodium borotritide-reducible residues. Biochem Biophys Res Commun 115(1):186–192PubMedCrossRefGoogle Scholar
  15. 15.
    Li W, Nugent MA, Zhao Y, Chau AN, Li SJ, Chou IN, Liu G, Kagan HM (2003) Lysyl oxidase oxidizes basic fibroblast growth factor and inactivates its mitogenic potential. J Cell Biochem 88(1):152–164. doi: 10.1002/jcb.10304 PubMedCrossRefGoogle Scholar
  16. 16.
    Lucero HA, Ravid K, Grimsby JL, Rich CB, DiCamillo SJ, Maki JM, Myllyharju J, Kagan HM (2008) Lysyl oxidase oxidizes cell membrane proteins and enhances the chemotactic response of vascular smooth muscle cells. J Biol Chem 283(35):24103–24117. doi: 10.1074/jbc.M709897200 PubMedCrossRefGoogle Scholar
  17. 17.
    Palamakumbura AH, Trackman PC (2002) A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples. Anal Biochem 300(2):245–251PubMedCrossRefGoogle Scholar
  18. 18.
    Horiguchi M, Inoue T, Ohbayashi T, Hirai M, Noda K, Marmorstein LY, Yabe D, Takagi K, Akama TO, Kita T, Kimura T, Nakamura T (2009) Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase. Proc Natl Acad Sci USA 106(45):19029–19034. doi: 10.1073/pnas.0908268106 PubMedCrossRefGoogle Scholar
  19. 19.
    Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 36(2):178–182. doi: 10.1038/ng1297 PubMedCrossRefGoogle Scholar
  20. 20.
    Voloshenyuk TG, Landesman ES, Khoutorova E, Hart AD, Gardner JD (2011) Induction of cardiac fibroblast lysyl oxidase by TGF-beta1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine 55(1):90–97. doi: 10.1016/j.cyto.2011.03.024 PubMedCrossRefGoogle Scholar
  21. 21.
    Voloshenyuk TG, Hart AD, Khoutorova E, Gardner JD (2011) TNF-alpha increases cardiac fibroblast lysyl oxidase expression through TGF-beta and PI3Kinase signaling pathways. Biochem Biophys Res Commun 413(2):370–375. doi: 10.1016/j.bbrc.2011.08.109 PubMedCrossRefGoogle Scholar
  22. 22.
    Chu IM, Michalowski AM, Hoenerhoff M, Szauter KM, Luger D, Sato M, Flanders K, Oshima A, Csiszar K, Green JE (2011) GATA3 inhibits lysyl oxidase-mediated metastases of human basal triple-negative breast cancer cells. Oncogene. doi: 10.1038/onc.2011.382
  23. 23.
    Park HJ, Gusarova G, Wang Z, Carr JR, Li J, Kim KH, Qiu J, Park YD, Williamson PR, Hay N, Tyner AL, Lau LF, Costa RH, Raychaudhuri P (2011) Deregulation of FoxM1b leads to tumour metastasis. EMBO Mol Med 3(1):21–34. doi: 10.1002/emmm.201000107 PubMedCrossRefGoogle Scholar
  24. 24.
    Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 105(17):6392–6397PubMedCrossRefGoogle Scholar
  25. 25.
    Fogelgren B, Polgar N, Szauter KM, Ujfaludi Z, Laczko R, Fong KS, Csiszar K (2005) Cellular fibronectin binds to lysyl oxidase with high affinity and is critical for its proteolytic activation. J Biol Chem 280(26):24690–24697PubMedCrossRefGoogle Scholar
  26. 26.
    Huang G, Zhang Y, Kim B, Ge G, Annis DS, Mosher DF, Greenspan DS (2009) Fibronectin binds and enhances the activity of bone morphogenetic protein 1. J Biol Chem 284(38):25879–25888. doi: 10.1074/jbc.M109.024125 PubMedCrossRefGoogle Scholar
  27. 27.
    Hornstra IK, Birge S, Starcher B, Bailey AJ, Mecham RP, Shapiro SD (2003) Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Biol Chem 278(16):14387–14393. doi: 10.1074/jbc.M210144200M210144200[pii] PubMedCrossRefGoogle Scholar
  28. 28.
    Maki JM, Rasanen J, Tikkanen H, Sormunen R, Makikallio K, Kivirikko KI, Soininen R (2002) Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106(19):2503–2509PubMedCrossRefGoogle Scholar
  29. 29.
    Maki JM, Sormunen R, Lippo S, Kaarteenaho-Wiik R, Soininen R, Myllyharju J (2005) Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol 167(4):927–936PubMedCrossRefGoogle Scholar
  30. 30.
    Drewes PG, Yanagisawa H, Starcher B, Hornstra I, Csiszar K, Marinis SI, Keller P, Word RA (2007) Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol 170(2):578–589. doi: 10.2353/ajpath.2007.060662 PubMedCrossRefGoogle Scholar
  31. 31.
    Molnar J, Fong KS, He QP, Hayashi K, Kim Y, Fong SF, Fogelgren B, Szauter KM, Mink M, Csiszar K (2003) Structural and functional diversity of lysyl oxidase and the LOX-like proteins. Biochim Biophys Acta 1647(1–2):220–224PubMedGoogle Scholar
  32. 32.
    Lugassy J, Zaffryar-Eilot S, Soueid S, Mordoviz A, Smith V, Kessler O, Neufeld G (2011) The enzymatic activity of lysyl oxidase like-2 (LOXL2) is not required for LOXL2 induced inhibition of keratinocyte differentiation. J Biol Chem. doi: 10.1074/jbc.M111.261016
  33. 33.
    Hollosi P, Yakushiji JK, Fong KS, Csiszar K, Fong SF (2009) Lysyl oxidase-like 2 promotes migration in noninvasive breast cancer cells but not in normal breast epithelial cells. Int J Cancer 125(2):318–327. doi: 10.1002/ijc.24308 PubMedCrossRefGoogle Scholar
  34. 34.
    Laczko R, Szauter KM, Jansen MK, Hollosi P, Muranyi M, Molnar J, Fong KS, Hinek A, Csiszar K (2007) Active lysyl oxidase (LOX) correlates with focal adhesion kinase (FAK)/paxillin activation and migration in invasive astrocytes. Neuropathol Appl Neurobiol 33(6):631–643PubMedCrossRefGoogle Scholar
  35. 35.
    Polgar N, Fogelgren B, Shipley JM, Csiszar K (2007) Lysyl oxidase interacts with hormone placental lactogen and synergistically promotes breast epithelial cell proliferation and migration. J Biol Chem 282(5):3262–3272PubMedCrossRefGoogle Scholar
  36. 36.
    Payne SL, Fogelgren B, Hess AR, Seftor EA, Wiley EL, Fong SF, Csiszar K, Hendrix MJ, Kirschmann DA (2005) Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res 65(24):11429–11436PubMedCrossRefGoogle Scholar
  37. 37.
    Nelson JM, Diegelmann RF, Cohen IK (1988) Effect of beta-aminopropionitrile and ascorbate on fibroblast migration. Proc Soc Exp Biol Med 188(3):346–352PubMedGoogle Scholar
  38. 38.
    Peinado H, Iglesias-de DC, la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F (2005) A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24(19):3446–3458PubMedCrossRefGoogle Scholar
  39. 39.
    Taylor MA, Amin JD, Kirschmann DA, Schiemann WP (2011) Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-beta signaling in breast cancer cells. Neoplasia 13(5):406–418PubMedGoogle Scholar
  40. 40.
    Moreno-Bueno G, Salvador F, Martin A, Floristan A, Cuevas EP, Santos V, Montes A, Morales S, Castilla MA, Rojo-Sebastian A, Martinez A, Hardisson D, Csiszar K, Portillo F, Peinado H, Palacios J, Cano A (2011) Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas. EMBO Mol MedGoogle Scholar
  41. 41.
    Schietke R, Warnecke C, Wacker I, Schodel J, Mole DR, Campean V, Amann K, Goppelt-Struebe M, Behrens J, Eckardt KU, Wiesener MS (2010) The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. J Biol Chem 285(9):6658–6669PubMedCrossRefGoogle Scholar
  42. 42.
    Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117(12):3810–3820PubMedGoogle Scholar
  43. 43.
    Bignon M, Pichol-Thievend C, Hardouin J, Malbouyres M, Brechot N, Nasciutti L, Barret A, Teillon J, Guillon E, Etienne E, Caron M, Joubert-Caron R, Monnot C, Ruggiero F, Muller L, Germain S (2011) Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood. doi: 10.1182/blood-2010-10-313296
  44. 44.
    Prohaska JR (1986) Genetic diseases of copper metabolism. Clin Physiol Biochem 4(1):87–93PubMedGoogle Scholar
  45. 45.
    Kemppainen R, Palatsi R, Kallioinen M, Oikarinen A (1997) A homozygous nonsense mutation and a combination of two mutations of the Wilson disease gene in patients with different lysyl oxidase activities in cultured fibroblasts. J Invest Dermatol 108(1):35–39PubMedCrossRefGoogle Scholar
  46. 46.
    Gacheru S, McGee C, Uriu-Hare JY, Kosonen T, Packman S, Tinker D, Krawetz SA, Reiser K, Keen CL, Rucker RB (1993) Expression and accumulation of lysyl oxidase, elastin, and type I procollagen in human Menkes and mottled mouse fibroblasts. Arch Biochem Biophys 301(2):325–329PubMedCrossRefGoogle Scholar
  47. 47.
    Khakoo A, Thomas R, Trompeter R, Duffy P, Price R, Pope FM (1997) Congenital cutis laxa and lysyl oxidase deficiency. Clin Genet 51(2):109–114PubMedCrossRefGoogle Scholar
  48. 48.
    Sibon I, Sommer P, Lamaziere JM, Bonnet J (2005) Lysyl oxidase deficiency: a new cause of human arterial dissection. Heart 91(5):e33. doi: 10.1136/hrt.2004.053074 PubMedCrossRefGoogle Scholar
  49. 49.
    Chanoki M, Ishii M, Kobayashi H, Fushida H, Yashiro N, Hamada T, Ooshima A (1995) Increased expression of lysyl oxidase in skin with scleroderma. Br J Dermatol 133(5):710–715PubMedCrossRefGoogle Scholar
  50. 50.
    Murawaki Y, Kusakabe Y, Hirayama C (1991) Serum lysyl oxidase activity in chronic liver disease in comparison with serum levels of prolyl hydroxylase and laminin. Hepatology 14(6):1167–1173PubMedCrossRefGoogle Scholar
  51. 51.
    Akagawa H, Narita A, Yamada H, Tajima A, Krischek B, Kasuya H, Hori T, Kubota M, Saeki N, Hata A, Mizutani T, Inoue I (2007) Systematic screening of lysyl oxidase-like (LOXL) family genes demonstrates that LOXL2 is a susceptibility gene to intracranial aneurysms. Hum Genet 121(3–4):377–387. doi: 10.1007/s00439-007-0333-3 PubMedCrossRefGoogle Scholar
  52. 52.
    Cenizo V, Andre V, Reymermier C, Sommer P, Damour O, Perrier E (2006) LOXL as a target to increase the elastin content in adult skin: a dill extract induces the LOXL gene expression. Exp Dermatol 15(8):574–581. doi: 10.1111/j.1600-0625.2006.00442.x PubMedCrossRefGoogle Scholar
  53. 53.
    Hajnal A, Klemenz R, Schafer R (1993) Up-regulation of lysyl oxidase in spontaneous revertants of H-ras-transformed rat fibroblasts. Cancer Res 53(19):4670–4675PubMedGoogle Scholar
  54. 54.
    Rost T, Pyritz V, Rathcke IO, Gorogh T, Dunne AA, Werner JA (2003) Reduction of LOX- and LOXL2-mRNA expression in head and neck squamous cell carcinomas. Anticancer Res 23(2B):1565–1573PubMedGoogle Scholar
  55. 55.
    Kaneda A, Wakazono K, Tsukamoto T, Watanabe N, Yagi Y, Tatematsu M, Kaminishi M, Sugimura T, Ushijima T (2004) Lysyl oxidase is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in human gastric cancers. Cancer Res 64(18):6410–6415. doi: 10.1158/0008-5472.CAN-04-1543 PubMedCrossRefGoogle Scholar
  56. 56.
    Wu G, Guo Z, Chang X, Kim MS, Nagpal JK, Liu J, Maki JM, Kivirikko KI, Ethier SP, Trink B, Sidransky D (2007) LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer. Cancer Res 67(9):4123–4129. doi: 10.1158/0008-5472.CAN-07-0012 PubMedCrossRefGoogle Scholar
  57. 57.
    Sato S, Trackman PC, Maki JM, Myllyharju J, Kirsch KH, Sonenshein GE (2011) The Ras signaling inhibitor LOX-PP interacts with Hsp70 and c-Raf to reduce Erk activation and transformed phenotype of breast cancer cells. Mol Cell Biol 31(13):2683–2695. doi: 10.1128/MCB.01148-10 PubMedCrossRefGoogle Scholar
  58. 58.
    Wu M, Min C, Wang X, Yu Z, Kirsch KH, Trackman PC, Sonenshein GE (2007) Repression of BCL2 by the tumor suppressor activity of the lysyl oxidase propeptide inhibits transformed phenotype of lung and pancreatic cancer cells. Cancer Res 67(13):6278–6285. doi: 10.1158/0008-5472.CAN-07-0776 PubMedCrossRefGoogle Scholar
  59. 59.
    Mbeunkui F, Metge BJ, Shevde LA, Pannell LK (2007) Identification of differentially secreted biomarkers using LC-MS/MS in isogenic cell lines representing a progression of breast cancer. J Proteome Res 6(8):2993–3002. doi: 10.1021/pr060629m PubMedCrossRefGoogle Scholar
  60. 60.
    Helleman J, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, Meijer-van Gelder ME, Sieuwerts AM, Klijn JG, Sleijfer S, Foekens JA, Berns EM (2008) Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clin Cancer Res 14(17):5555–5564PubMedCrossRefGoogle Scholar
  61. 61.
    Le QT, Harris J, Magliocco AM, Kong CS, Diaz R, Shin B, Cao H, Trotti A, Erler JT, Chung CH, Dicker A, Pajak TF, Giaccia AJ, Ang KK (2009) Validation of lysyl oxidase as a prognostic marker for metastasis and survival in head and neck squamous cell carcinoma: Radiation Therapy Oncology Group trial 90–03. J Clin Oncol 27(26):4281–4286PubMedCrossRefGoogle Scholar
  62. 62.
    Stewart GD, Gray K, Pennington CJ, Edwards DR, Riddick AC, Ross JA, Habib FK (2008) Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter-1 expression correlate with Gleason score. Oncol Rep 20(6):1561–1567PubMedGoogle Scholar
  63. 63.
    Woznick AR, Braddock AL, Dulai M, Seymour ML, Callahan RE, Welsh RJ, Chmielewski GW, Zelenock GB, Shanley CJ (2005) Lysyl oxidase expression in bronchogenic carcinoma. Am J Surg 189(3):297–301PubMedCrossRefGoogle Scholar
  64. 64.
    Gao Y, Ge G, Ji H (2011) LKB1 in lung cancerigenesis: a serine/threonine kinase as tumor suppressor. Protein Cell 2(2):99–107. doi: 10.1007/s13238-011-1021-6 PubMedCrossRefGoogle Scholar
  65. 65.
    Scola N, Gorogh T (2010) LOXL4 as a selective molecular marker in primary and metastatic head/neck carcinoma. Anticancer Res 30(11):4567–4571PubMedGoogle Scholar
  66. 66.
    Kim Y, Roh S, Park JY, Kim Y, Cho DH, Kim JC (2009) Differential expression of the LOX family genes in human colorectal adenocarcinomas. Oncol Rep 22(4):799–804PubMedCrossRefGoogle Scholar
  67. 67.
    Fong SF, Dietzsch E, Fong KS, Hollosi P, Asuncion L, He Q, Parker MI, Csiszar K (2007) Lysyl oxidase-like 2 expression is increased in colon and esophageal tumors and associated with less differentiated colon tumors. Genes Chromosomes Cancer 46(7):644–655. doi: 10.1002/gcc.20444 PubMedCrossRefGoogle Scholar
  68. 68.
    Peinado H, Moreno-Bueno G, Hardisson D, Perez-Gomez E, Santos V, Mendiola M, de Diego JI, Nistal M, Quintanilla M, Portillo F, Cano A (2008) Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell carcinomas. Cancer Res 68(12):4541–4550. doi: 10.1158/0008-5472.CAN-07-6345 PubMedCrossRefGoogle Scholar
  69. 69.
    Peng L, Ran YL, Hu H, Yu L, Liu Q, Zhou Z, Sun YM, Sun LC, Pan J, Sun LX, Zhao P, Yang ZH (2009) Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis 30(10):1660–1669PubMedCrossRefGoogle Scholar
  70. 70.
    Ruckert F, Joensson P, Saeger HD, Grutzmann R, Pilarsky C (2010) Functional analysis of LOXL2 in pancreatic carcinoma. Int J Colorectal Dis 25(3):303–311. doi: 10.1007/s00384-009-0853-5 PubMedCrossRefGoogle Scholar
  71. 71.
    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906PubMedCrossRefGoogle Scholar
  72. 72.
    Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17(1):71–77PubMedCrossRefGoogle Scholar
  73. 73.
    Chi JT, Wang Z, Nuyten DS, Rodriguez EH, Schaner ME, Salim A, Wang Y, Kristensen GB, Helland A, Borresen-Dale AL, Giaccia A, Longaker MT, Hastie T, Yang GP, van de Vijver MJ, Brown PO (2006) Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3(3):e47. doi: 10.1371/journal.pmed.0030047 PubMedCrossRefGoogle Scholar
  74. 74.
    Kirschmann DA, Seftor EA, Fong SF, Nieva DR, Sullivan CM, Edwards EM, Sommer P, Csiszar K, Hendrix MJ (2002) A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res 62(15):4478–4483PubMedGoogle Scholar
  75. 75.
    Pez F, Dayan F, Durivault J, Kaniewski B, Aimond G, Le Provost GS, Deux B, Clezardin P, Sommer P, Pouyssegur J, Reynaud C (2011) The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res 71(5):1647–1657PubMedCrossRefGoogle Scholar
  76. 76.
    Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514PubMedCrossRefGoogle Scholar
  77. 77.
    Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N, Johnson RS (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6(5):485–495. doi: 10.1016/j.ccr.2004.09.026 PubMedCrossRefGoogle Scholar
  78. 78.
    Martin LJ, Boyd NF (2008) Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res 10(1):201. doi: 10.1186/bcr1831 PubMedCrossRefGoogle Scholar
  79. 79.
    Kolacna L, Bakesova J, Varga F, Kostakova E, Planka L, Necas A, Lukas D, Amler E, Pelouch V (2007) Biochemical and biophysical aspects of collagen nanostructure in the extracellular matrix. Physiol Res 56(Suppl 1):S51–S60PubMedGoogle Scholar
  80. 80.
    Jodele S, Blavier L, Yoon JM, DeClerck YA (2006) Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev 25(1):35–43. doi: 10.1007/s10555-006-7887-8 PubMedCrossRefGoogle Scholar
  81. 81.
    Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11PubMedCrossRefGoogle Scholar
  82. 82.
    Akiri G, Sabo E, Dafni H, Vadasz Z, Kartvelishvily Y, Gan N, Kessler O, Cohen T, Resnick M, Neeman M, Neufeld G (2003) Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res 63(7):1657–1666PubMedGoogle Scholar
  83. 83.
    Barker HE, Chang J, Cox TR, Lang G, Bird D, Nicolau M, Evans HR, Gartland A, Erler JT (2011) LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res 71(5):1561–1572PubMedCrossRefGoogle Scholar
  84. 84.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254PubMedCrossRefGoogle Scholar
  85. 85.
    Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15(1):35–44PubMedCrossRefGoogle Scholar
  86. 86.
    Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, Fraley SI, Wong CM, Khoo US, Ng IO, Wirtz D, Semenza GL (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1113483108
  87. 87.
    Kirschmann DA, Seftor EA, Nieva DR, Mariano EA, Hendrix MJ (1999) Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res Treat 55(2):127–136PubMedCrossRefGoogle Scholar
  88. 88.
    Li W, Liu G, Chou IN, Kagan HM (2000) Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells. J Cell Biochem 78(4):550–557. doi:10.1002/1097-4644(20000915)78:4<550::AID-JCB4>3.0.CO;2-8 [pii]PubMedCrossRefGoogle Scholar
  89. 89.
    Payne SL, Hendrix MJ, Kirschmann DA (2006) Lysyl oxidase regulates actin filament formation through the p130(Cas)/Crk/DOCK180 signaling complex. J Cell Biochem 98(4):827–837PubMedCrossRefGoogle Scholar
  90. 90.
    Levayer R, Lecuit T (2008) Breaking down EMT. Nat Cell Biol 10(7):757–759PubMedCrossRefGoogle Scholar
  91. 91.
    Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829PubMedCrossRefGoogle Scholar
  92. 92.
    Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172PubMedCrossRefGoogle Scholar
  93. 93.
    Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ (2005) Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280(12):11740–11748. doi: 10.1074/jbc.M413878200 PubMedCrossRefGoogle Scholar
  94. 94.
    Grego-Bessa J, Diez J, Timmerman L, de la Pompa JL (2004) Notch and epithelial-mesenchyme transition in development and tumor progression: another turn of the screw. Cell Cycle 3(6):718–721PubMedCrossRefGoogle Scholar
  95. 95.
    Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18(1):99–115. doi: 10.1101/gad.276304 PubMedCrossRefGoogle Scholar
  96. 96.
    Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24(50):7443–7454PubMedCrossRefGoogle Scholar
  97. 97.
    Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305PubMedCrossRefGoogle Scholar
  98. 98.
    Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6(10):931–940PubMedCrossRefGoogle Scholar
  99. 99.
    Peinado H, Portillo F, Cano A (2005) Switching on-off Snail: LOXL2 versus GSK3beta. Cell Cycle 4(12):1749–1752PubMedCrossRefGoogle Scholar
  100. 100.
    Sion AM, Figg WD (2006) Lysyl oxidase (LOX) and hypoxia-induced metastases. Cancer Biol Ther 5(8):909–911PubMedCrossRefGoogle Scholar
  101. 101.
    Atsawasuwan P, Mochida Y, Katafuchi M, Kaku M, Fong KS, Csiszar K, Yamauchi M (2008) Lysyl oxidase binds transforming growth factor-beta and regulates its signaling via amine oxidase activity. J Biol Chem 283(49):34229–34240PubMedCrossRefGoogle Scholar
  102. 102.
    Kim DJ, Lee DC, Yang SJ, Lee JJ, Bae EM, Kim DM, Min SH, Kim SJ, Kang DC, Sang BC, Myung PK, Park KC, Yeom YI (2008) Lysyl oxidase like 4, a novel target gene of TGF-beta1 signaling, can negatively regulate TGF-beta1-induced cell motility in PLC/PRF/5 hepatoma cells. Biochem Biophys Res Commun 373(4):521–527PubMedCrossRefGoogle Scholar
  103. 103.
    Bouez C, Reynaud C, Noblesse E, Thepot A, Gleyzal C, Kanitakis J, Perrier E, Damour O, Sommer P (2006) The lysyl oxidase LOX is absent in basal and squamous cell carcinomas and its knockdown induces an invading phenotype in a skin equivalent model. Clin Cancer Res 12(5):1463–1469. doi: 10.1158/1078-0432.CCR-05-1456 PubMedCrossRefGoogle Scholar
  104. 104.
    Postovit LM, Abbott DE, Payne SL, Wheaton WW, Margaryan NV, Sullivan R, Jansen MK, Csiszar K, Hendrix MJ, Kirschmann DA (2008) Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. J Cell Biochem 103(5):1369–1378. doi: 10.1002/jcb.21517 PubMedCrossRefGoogle Scholar
  105. 105.
    Zhao Y, Min C, Vora SR, Trackman PC, Sonenshein GE, Kirsch KH (2009) The lysyl oxidase pro-peptide attenuates fibronectin-mediated activation of focal adhesion kinase and p130Cas in breast cancer cells. J Biol Chem 284(3):1385–1393. doi: 10.1074/jbc.M802612200 PubMedCrossRefGoogle Scholar
  106. 106.
    Min C, Zhao Y, Romagnoli M, Trackman PC, Sonenshein GE, Kirsch KH (2010) Lysyl oxidase propeptide sensitizes pancreatic and breast cancer cells to doxorubicin-induced apoptosis. J Cell Biochem 111(5):1160–1168. doi: 10.1002/jcb.22828 PubMedCrossRefGoogle Scholar
  107. 107.
    Patani N, Jiang W, Newbold R, Mokbel K (2010) Prognostic implications of carboxyl-terminus of Hsc70 interacting protein and lysyl-oxidase expression in human breast cancer. J Carcinog 9:9. doi: 10.4103/1477-3163.72505 PubMedCrossRefGoogle Scholar
  108. 108.
    Min C, Yu Z, Kirsch KH, Zhao Y, Vora SR, Trackman PC, Spicer DB, Rosenberg L, Palmer JR, Sonenshein GE (2009) A loss-of-function polymorphism in the propeptide domain of the LOX gene and breast cancer. Cancer Res 69(16):6685–6693PubMedCrossRefGoogle Scholar
  109. 109.
    Min C, Kirsch KH, Zhao Y, Jeay S, Palamakumbura AH, Trackman PC, Sonenshein GE (2007) The tumor suppressor activity of the lysyl oxidase propeptide reverses the invasive phenotype of Her-2/neu-driven breast cancer. Cancer Res 67(3):1105–1112. doi: 10.1158/0008-5472.CAN-06-3867 PubMedCrossRefGoogle Scholar
  110. 110.
    Hamalainen ER, Kemppainen R, Kuivaniemi H, Tromp G, Vaheri A, Pihlajaniemi T, Kivirikko KI (1995) Quantitative polymerase chain reaction of lysyl oxidase mRNA in malignantly transformed human cell lines demonstrates that their low lysyl oxidase activity is due to low quantities of its mRNA and low levels of transcription of the respective gene. J Biol Chem 270(37):21590–21593PubMedCrossRefGoogle Scholar
  111. 111.
    Baker AM, Cox TR, Bird D, Lang G, Murray GI, Sun XF, Southall SM, Wilson JR, Erler JT (2011) The role of lysyl oxidase in SRC-dependent proliferation and metastasis of colorectal cancer. J Natl Cancer Inst 103(5):407–424. doi: 10.1093/jnci/djq569 PubMedCrossRefGoogle Scholar
  112. 112.
    Wilgus ML, Borczuk AC, Stoopler M, Ginsburg M, Gorenstein L, Sonett JR, Powell CA (2010) Lysyl oxidase: A lung adenocarcinoma biomarker of invasion and survival. CancerGoogle Scholar
  113. 113.
    Albinger-Hegyi A, Stoeckli SJ, Schmid S, Storz M, Iotzova G, Probst-Hensch NM, Rehrauer H, Tinguely M, Moch H, Hegyi I (2010) Lysyl oxidase expression is an independent marker of prognosis and a predictor of lymph node metastasis in oral and oropharyngeal squamous cell carcinoma (OSCC). Int J Cancer 126(11):2653–2662. doi: 10.1002/ijc.24948 PubMedGoogle Scholar
  114. 114.
    Palamakumbura AH, Vora SR, Nugent MA, Kirsch KH, Sonenshein GE, Trackman PC (2009) Lysyl oxidase propeptide inhibits prostate cancer cell growth by mechanisms that target FGF-2-cell binding and signaling. Oncogene 28(38):3390–3400PubMedCrossRefGoogle Scholar
  115. 115.
    Stassar MJ, Devitt G, Brosius M, Rinnab L, Prang J, Schradin T, Simon J, Petersen S, Kopp-Schneider A, Zoller M (2001) Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization. Br J Cancer 85(9):1372–1382. doi: 10.1054/bjoc.2001.2074S0007092001920749[pii] PubMedCrossRefGoogle Scholar
  116. 116.
    Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera SA, Liang MC, Cai D, Naumov GN, Bao L, Contreras CM, Li D, Chen L, Krishnamurthy J, Koivunen J, Chirieac LR, Padera RF, Bronson RT, Lindeman NI, Christiani DC, Lin X, Shapiro GI, Janne PA, Johnson BE, Meyerson M, Kwiatkowski DJ, Castrillon DH, Bardeesy N, Sharpless NE, Wong KK (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448(7155):807–810PubMedCrossRefGoogle Scholar
  117. 117.
    Tsuchiya MI, Okuda H, Takaki Y, Baba M, Hirai S, Ohno S, Shuin T (2005) Renal cell carcinoma- and pheochromocytoma-specific altered gene expression profiles in VHL mutant clones. Oncol Rep 13(6):1033–1041PubMedGoogle Scholar
  118. 118.
    Bell A, Bell D, Weber RS, El-Naggar AK (2011) CpG island methylation profiling in human salivary gland adenoid cystic carcinoma. Cancer 117(13):2898–2909. doi: 10.1002/cncr.25818 PubMedCrossRefGoogle Scholar
  119. 119.
    Brekhman V, Lugassie J, Zaffryar-Eilot S, Sabo E, Kessler O, Smith V, Golding H, Neufeld G (2010) Receptor activity modifying protein-3 mediates the protumorigenic activity of lysyl oxidase-like protein-2. FASEB J 25(1):55–65PubMedCrossRefGoogle Scholar
  120. 120.
    Weise JB, Csiszar K, Gottschlich S, Hoffmann M, Schmidt A, Weingartz U, Adamzik I, Heiser A, Kabelitz D, Ambrosch P, Gorogh T (2008) Vaccination strategy to target lysyl oxidase-like 4 in dendritic cell based immunotherapy for head and neck cancer. Int J Oncol 32(2):317–322PubMedGoogle Scholar
  121. 121.
    Holtmeier C, Gorogh T, Beier U, Meyer J, Hoffmann M, Gottschlich S, Heidorn K, Ambrosch P, Maune S (2003) Overexpression of a novel lysyl oxidase-like gene in human head and neck squamous cell carcinomas. Anticancer Res 23(3B):2585–2591PubMedGoogle Scholar
  122. 122.
    Sebban S, Davidson B, Reich R (2009) Lysyl oxidase-like 4 is alternatively spliced in an anatomic site-specific manner in tumors involving the serosal cavities. Virchows Arch 454(1):71–79. doi: 10.1007/s00428-008-0694-6 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina

Personalised recommendations