Cancer Microenvironment

, Volume 4, Issue 3, pp 221–235

Homing of Cancer Cells to the Bone

  • Anjali Mishra
  • Yusuke Shiozawa
  • Kenneth J. Pienta
  • Russell S. Taichman
Original Paper

Abstract

A variety of tumor cells preferentially home to the bone. The homing of cancer cells to the bone represents a multi-step process that involves malignant progression of the tumor, invasion of the tumor through the extracellular matrix and the blood vessels and settling of the tumor cells in the bone. Gaining a greater understanding as to the mechanisms used by cancer cells in these processes will facilitate the design of drugs which could specifically target the homing process. In this review we will discuss the properties of tumor cells and the bone microenvironment which promote homing of a cancer cell to the bone. We will highlight the different steps and the molecular pathways involved when a cancer cell metastasize to the bone. Since bone is the major home for hematopoietic stem cells (HSCs), we will also highlight the similarities between the homing of cancer and HSC to the bone. Finally we will conclude with therapeutic and early detection strategies which can prevent homing of a cancer cell to the bone.

Keywords

Homing Skeletal metastasis Chemotaxis Matrix degradation Cytokines Tumor bone cross-talk Bone microenvironment HSC niche 

References

  1. 1.
    Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249sPubMedGoogle Scholar
  2. 2.
    Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593PubMedGoogle Scholar
  3. 3.
    Jemal A et al (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66PubMedGoogle Scholar
  4. 4.
    Mantyh PW et al (2002) Molecular mechanisms of cancer pain. Nat Rev Cancer 2(3):201–209PubMedGoogle Scholar
  5. 5.
    Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594PubMedGoogle Scholar
  6. 6.
    Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5(16):1744–1750PubMedGoogle Scholar
  7. 7.
    Morgan TM et al (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15(2):677–683PubMedGoogle Scholar
  8. 8.
    Braun S et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353(8):793–802PubMedGoogle Scholar
  9. 9.
    Cristofanilli M et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791PubMedGoogle Scholar
  10. 10.
    Pierga JY et al (2008) Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res 14(21):7004–7010PubMedGoogle Scholar
  11. 11.
    Roudier M (2003) Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol 34(7):646–653PubMedGoogle Scholar
  12. 12.
    Liu W et al (2009) Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med 15(5):559–565PubMedGoogle Scholar
  13. 13.
    Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664PubMedGoogle Scholar
  14. 14.
    Guise TA et al (2006) Basic Mechanisms Responsible for Osteolytic and Osteoblastic Bone Metastases. Clin Cancer Res 12(20):6213s–6216sPubMedGoogle Scholar
  15. 15.
    Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428PubMedGoogle Scholar
  16. 16.
    Vicovac L, Aplin JD (1996) Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel) 156(3):202–216Google Scholar
  17. 17.
    Zeisberg EM et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961PubMedGoogle Scholar
  18. 18.
    Zeisberg M et al (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282(32):23337–23347PubMedGoogle Scholar
  19. 19.
    Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454PubMedGoogle Scholar
  20. 20.
    Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715PubMedGoogle Scholar
  21. 21.
    Morel AP et al (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3(8):e2888PubMedGoogle Scholar
  22. 22.
    Lapidot T et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648PubMedGoogle Scholar
  23. 23.
    Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988PubMedGoogle Scholar
  24. 24.
    Ginestier C et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567PubMedGoogle Scholar
  25. 25.
    Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  26. 26.
    Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76(1):69–125PubMedGoogle Scholar
  27. 27.
    Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6(7):506–520PubMedGoogle Scholar
  28. 28.
    Kuperwasser C et al (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101(14):4966–4971PubMedGoogle Scholar
  29. 29.
    Orimo A et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348PubMedGoogle Scholar
  30. 30.
    Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573PubMedGoogle Scholar
  31. 31.
    Sternlicht MD et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98(2):137–146PubMedGoogle Scholar
  32. 32.
    Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563PubMedGoogle Scholar
  33. 33.
    Goldstein RH et al (2010) Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res 70(24):10044–10050PubMedGoogle Scholar
  34. 34.
    Subarsky P, Hill RP (2003) The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20(3):237–250PubMedGoogle Scholar
  35. 35.
    John A, Tuszynski G (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7(1):14–23PubMedGoogle Scholar
  36. 36.
    Wilson TJ, Singh RK (2008) Proteases as modulators of tumor-stromal interaction: primary tumors to bone metastases. Biochim Biophys Acta 1785(2):85–95PubMedGoogle Scholar
  37. 37.
    Bachmeier BE et al (2001) Matrix metalloproteinases (MMPs) in breast cancer cell lines of different tumorigenicity. Anticancer Res 21(6A):3821–3828PubMedGoogle Scholar
  38. 38.
    Nakopoulou L et al (2003) MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival. Breast Cancer Res Treat 77(2):145–155PubMedGoogle Scholar
  39. 39.
    Eck SM et al (2009) Matrix metalloproteinase-1 promotes breast cancer angiogenesis and osteolysis in a novel in vivo model. Breast Cancer Res Treat 116(1):79–90PubMedGoogle Scholar
  40. 40.
    Klein A et al (2009) Identification of brain- and bone-specific breast cancer metastasis genes. Cancer Lett 276(2):212–220PubMedGoogle Scholar
  41. 41.
    Dong Z et al (2005) Matrix metalloproteinase activity and osteoclasts in experimental prostate cancer bone metastasis tissue. Am J Pathol 166(4):1173–1186PubMedGoogle Scholar
  42. 42.
    Nabha SM et al (2008) Bone marrow stromal cells enhance prostate cancer cell invasion through type I collagen in an MMP-12 dependent manner. Int J Cancer 122(11):2482–2490PubMedGoogle Scholar
  43. 43.
    Janowska-Wieczorek A et al (2000) Differential MMP and TIMP production by human marrow and peripheral blood CD34(+) cells in response to chemokines. Exp Hematol 28(11):1274–1285PubMedGoogle Scholar
  44. 44.
    Sloane BF (1990) Cathepsin B and cystatins: evidence for a role in cancer progression. Semin Cancer Biol 1(2):137–152PubMedGoogle Scholar
  45. 45.
    Sinha AA et al (2001) Ratio of cathepsin B to stefin A identifies heterogeneity within Gleason histologic scores for human prostate cancer. Prostate 48(4):274–284PubMedGoogle Scholar
  46. 46.
    Brubaker KD et al (2003) Cathepsin K mRNA and protein expression in prostate cancer progression. J Bone Miner Res 18(2):222–230PubMedGoogle Scholar
  47. 47.
    Testa JE, Quigley JP (1990) The role of urokinase-type plasminogen activator in aggressive tumor cell behavior. Cancer Metastasis Rev 9(4):353–367PubMedGoogle Scholar
  48. 48.
    Achbarou A et al (1994) Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res 54(9):2372–2377PubMedGoogle Scholar
  49. 49.
    Rabbani SA et al (1990) An amino-terminal fragment of urokinase isolated from a prostate cancer cell line (PC-3) is mitogenic for osteoblast-such as cells. Biochem Biophys Res Commun 173(3):1058–1064PubMedGoogle Scholar
  50. 50.
    Christopherson KW 2nd, Hangoc G, Broxmeyer HE (2002) Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 169(12):7000–7008PubMedGoogle Scholar
  51. 51.
    Sun YX et al (2008) CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clin Exp Metastasis 25(7):765–776PubMedGoogle Scholar
  52. 52.
    Christopherson KW 2nd et al (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305(5686):1000–1003PubMedGoogle Scholar
  53. 53.
    Cramer SD, Chen Z, Peehl DM (1996) Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-such as domain: inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts. J Urol 156(2 Pt 1):526–531PubMedGoogle Scholar
  54. 54.
    Dallas SL et al (1995) Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein. J Cell Biol 131(2):539–549PubMedGoogle Scholar
  55. 55.
    Iwamura M et al (1996) Alteration of the hormonal bioactivity of parathyroid hormone-related protein (PTHrP) as a result of limited proteolysis by prostate-specific antigen. Urology 48(2):317–325PubMedGoogle Scholar
  56. 56.
    Killian CS et al (1993) Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-beta and a proteolytic modulation of cell adhesion receptors. Biochem Biophys Res Commun 192(2):940–947PubMedGoogle Scholar
  57. 57.
    Nadiminty N et al (2006) Prostate-specific antigen modulates genes involved in bone remodeling and induces osteoblast differentiation of human osteosarcoma cell line SaOS-2. Clin Cancer Res 12(5):1420–1430PubMedGoogle Scholar
  58. 58.
    Nagasawa T, Tachibana K, Kishimoto T (1998) A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol 10(3):179–185PubMedGoogle Scholar
  59. 59.
    Ponomaryov T et al (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106(11):1331–1339PubMedGoogle Scholar
  60. 60.
    Loetscher M et al (1994) Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem 269(1):232–237PubMedGoogle Scholar
  61. 61.
    Peled A et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283(5403):845–848PubMedGoogle Scholar
  62. 62.
    Kollet O et al (2001) Rapid and efficient homing of human CD34(+)CD38(−/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood 97(10):3283–3291PubMedGoogle Scholar
  63. 63.
    Peled A et al (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest 104(9):1199–1211PubMedGoogle Scholar
  64. 64.
    Peled A et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95(11):3289–3296PubMedGoogle Scholar
  65. 65.
    Wysoczynski M et al (2005) Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 105(1):40–48PubMedGoogle Scholar
  66. 66.
    Taichman RS et al (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62(6):1832–1837PubMedGoogle Scholar
  67. 67.
    Sun YX et al (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20(2):318–329PubMedGoogle Scholar
  68. 68.
    Sun YX et al (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89(3):462–473PubMedGoogle Scholar
  69. 69.
    Arya M et al (2004) The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. J Exp Ther Oncol 4(4):291–303PubMedGoogle Scholar
  70. 70.
    Wang J et al (2008) The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 283(7):4283–4294PubMedGoogle Scholar
  71. 71.
    Muller A et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56PubMedGoogle Scholar
  72. 72.
    Sloan EK, Anderson RL (2002) Genes involved in breast cancer metastasis to bone. Cell Mol Life Sci 59(9):1491–1502PubMedGoogle Scholar
  73. 73.
    Kang Y et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549PubMedGoogle Scholar
  74. 74.
    Luker KE, Luker GD (2006) Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 238(1):30–41PubMedGoogle Scholar
  75. 75.
    Shim H et al (2006) Lower expression of CXCR4 in lymph node metastases than in primary breast cancers: potential regulation by ligand-dependent degradation and HIF-1alpha. Biochem Biophys Res Commun 346(1):252–258PubMedGoogle Scholar
  76. 76.
    Salvucci O et al (2006) The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat 97(3):275–283PubMedGoogle Scholar
  77. 77.
    Bradstock KF et al (2000) Effects of the chemokine stromal cell-derived factor-1 on the migration and localization of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 14(5):882–888PubMedGoogle Scholar
  78. 78.
    Bendall LJ et al (2005) Defective p38 mitogen-activated protein kinase signaling impairs chemotaxic but not proliferative responses to stromal-derived factor-1alpha in acute lymphoblastic leukemia. Cancer Res 65(8):3290–3298PubMedGoogle Scholar
  79. 79.
    Spiegel A et al (2004) Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 103(8):2900–2907PubMedGoogle Scholar
  80. 80.
    Mohle R et al (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91(12):4523–4530PubMedGoogle Scholar
  81. 81.
    Voermans C et al (2002) Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia 16(4):650–657PubMedGoogle Scholar
  82. 82.
    Burger JA et al (2003) CXCR4 chemokine receptors (CD184) and alpha4beta1 integrins mediate spontaneous migration of human CD34+ progenitors and acute myeloid leukaemia cells beneath marrow stromal cells (pseudoemperipolesis). Br J Haematol 122(4):579–589PubMedGoogle Scholar
  83. 83.
    Tavor S et al (2004) CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 64(8):2817–2824PubMedGoogle Scholar
  84. 84.
    Monaco G et al (2004) Engraftment of acute myeloid leukemia in NOD/SCID mice is independent of CXCR4 and predicts poor patient survival. Stem Cells 22(2):188–201PubMedGoogle Scholar
  85. 85.
    Burger JA, Burger M, Kipps TJ (1999) Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94(11):3658–3667PubMedGoogle Scholar
  86. 86.
    Burger M et al (2005) Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 106(5):1824–1830PubMedGoogle Scholar
  87. 87.
    Lu Y et al (2008) CXCL16 functions as a novel chemotactic factor for prostate cancer cells in vitro. Mol Cancer Res 6(4):546–554PubMedGoogle Scholar
  88. 88.
    Takahashi S et al (1994) Cloning and identification of annexin II as an autocrine/paracrine factor that increases osteoclast formation and bone resorption. J Biol Chem 269(46):28696–28701PubMedGoogle Scholar
  89. 89.
    Jung Y et al (2007) Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110(1):82–90PubMedGoogle Scholar
  90. 90.
    Cole SP et al (1992) Elevated expression of annexin II (lipocortin II, p36) in a multidrug resistant small cell lung cancer cell line. Br J Cancer 65(4):498–502PubMedGoogle Scholar
  91. 91.
    Emoto K et al (2001) Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer 92(6):1419–1426PubMedGoogle Scholar
  92. 92.
    Roseman BJ et al (1994) Annexin II marks astrocytic brain tumors of high histologic grade. Oncol Res 6(12):561–567PubMedGoogle Scholar
  93. 93.
    Vishwanatha JK et al (1993) Enhanced expression of annexin II in human pancreatic carcinoma cells and primary pancreatic cancers. Carcinogenesis 14(12):2575–2579PubMedGoogle Scholar
  94. 94.
    Shiozawa Y et al (2008) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105(2):370–380PubMedGoogle Scholar
  95. 95.
    Shiozawa Y, Pedersen EA, Taichman RS (2010) GAS6/Mer axis regulates the homing and survival of the E2A/PBX1-positive B-cell precursor acute lymphoblastic leukemia in the bone marrow niche. Exp Hematol 38(2):132–140PubMedGoogle Scholar
  96. 96.
    Gjerdrum C et al (2010) Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci USA 107(3):1124–1129PubMedGoogle Scholar
  97. 97.
    Koorstra JB et al (2009) The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol Ther 8(7):618–626PubMedGoogle Scholar
  98. 98.
    Rankin EB et al (2010) AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res 70(19):7570–7579PubMedGoogle Scholar
  99. 99.
    Hector A et al (2010) The Axl receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biol Ther 10(10):1009–1018PubMedGoogle Scholar
  100. 100.
    Gustafsson A et al (2009) Gas6 and the receptor tyrosine kinase Axl in clear cell renal cell carcinoma. PLoS One 4(10):e7575PubMedGoogle Scholar
  101. 101.
    Shiozawa Y et al (2010) GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12(2):116–127PubMedGoogle Scholar
  102. 102.
    Hill A et al (2006) The emerging role of CD44 in regulating skeletal micrometastasis. Cancer Lett 237(1):1–9PubMedGoogle Scholar
  103. 103.
    Avigdor A et al (2004) CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103(8):2981–2989PubMedGoogle Scholar
  104. 104.
    Nilsson SK et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106(4):1232–1239PubMedGoogle Scholar
  105. 105.
    Fedarko NS et al (2001) Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res 7(12):4060–4066PubMedGoogle Scholar
  106. 106.
    Rudland PS et al (2002) Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res 62(12):3417–3427PubMedGoogle Scholar
  107. 107.
    Thalmann GN et al (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5(8):2271–2277PubMedGoogle Scholar
  108. 108.
    Tuck AB et al (1997) Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med 121(6):578–584PubMedGoogle Scholar
  109. 109.
    Tuck AB et al (1999) Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 18(29):4237–4246PubMedGoogle Scholar
  110. 110.
    Wai PY, Kuo PC (2004) The role of Osteopontin in tumor metastasis. J Surg Res 121(2):228–241PubMedGoogle Scholar
  111. 111.
    Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032PubMedGoogle Scholar
  112. 112.
    Furger KA et al (2003) Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res 1(11):810–819PubMedGoogle Scholar
  113. 113.
    Sun YX et al (2007) Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 67(1):61–73PubMedGoogle Scholar
  114. 114.
    Sethi T et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5(6):662–668PubMedGoogle Scholar
  115. 115.
    Hodkinson PS et al (2006) ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase. Cell Death Differ 13(10):1776–1788PubMedGoogle Scholar
  116. 116.
    Aoudjit F, Vuori K (2001) Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 20(36):4995–5004PubMedGoogle Scholar
  117. 117.
    Matsunaga T et al (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9(9):1158–1165PubMedGoogle Scholar
  118. 118.
    Verfaillie CM (1998) Adhesion receptors as regulators of the hematopoietic process. Blood 92(8):2609–2612PubMedGoogle Scholar
  119. 119.
    Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639PubMedGoogle Scholar
  120. 120.
    Chu K et al (2008) Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res 6(8):1259–1267PubMedGoogle Scholar
  121. 121.
    Huang CF et al (2010) Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res 70(11):4580–4589PubMedGoogle Scholar
  122. 122.
    Tamura D et al (2008) Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int J Oncol 33(1):17–24PubMedGoogle Scholar
  123. 123.
    Wein F et al (2010) N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res 4(2):129–139PubMedGoogle Scholar
  124. 124.
    Kiel MJ et al (2009) Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 4(2):170–179PubMedGoogle Scholar
  125. 125.
    Fidler IJ, Kim S-J, Langley RR (2007) The role of the organ microenvironment in the biology and therapy of cancer metastasis. J Cell Biochem 101(4):927–936PubMedGoogle Scholar
  126. 126.
    Yoneda T, Hiraga T (2005) Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun 328(3):679–687PubMedGoogle Scholar
  127. 127.
    Lacey DL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176PubMedGoogle Scholar
  128. 128.
    Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342PubMedGoogle Scholar
  129. 129.
    Simonet WS et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319PubMedGoogle Scholar
  130. 130.
    Grimaud E et al (2003) Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 163(5):2021–2031PubMedGoogle Scholar
  131. 131.
    Brown JM et al (2001) Osteoprotegerin and rank ligand expression in prostate cancer. Urology 57(4):611–616PubMedGoogle Scholar
  132. 132.
    Lynch CC et al (2005) MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7(5):485–496PubMedGoogle Scholar
  133. 133.
    Sordillo EM, Pearse RN (2003) RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer 97(3 Suppl):802–812PubMedGoogle Scholar
  134. 134.
    Jones DH et al (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440(7084):692–696PubMedGoogle Scholar
  135. 135.
    Miller J et al (2002) The core-binding factor beta subunit is required for bone formation and hematopoietic maturation. Nat Genet 32(4):645–649PubMedGoogle Scholar
  136. 136.
    Komori T et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764PubMedGoogle Scholar
  137. 137.
    Barnes GL et al (2003) Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 63(10):2631–2637PubMedGoogle Scholar
  138. 138.
    Enomoto H et al (2003) Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2-/- mice by RANKL transgene. J Biol Chem 278(26):23971–23977PubMedGoogle Scholar
  139. 139.
    Pratap J et al (2005) The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25(19):8581–8591PubMedGoogle Scholar
  140. 140.
    Pratap J et al (2006) Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 25(4):589–600PubMedGoogle Scholar
  141. 141.
    Akech J et al (2010) Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29(6):811–821PubMedGoogle Scholar
  142. 142.
    Baniwal SK et al (2010) Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 9:258PubMedGoogle Scholar
  143. 143.
    Elliott RL, Blobe GC (2005) Role of transforming growth factor Beta in human cancer. J Clin Oncol 23(9):2078–2093PubMedGoogle Scholar
  144. 144.
    Mohammad KS et al (2009) Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS One 4(4):e5275PubMedGoogle Scholar
  145. 145.
    Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584PubMedGoogle Scholar
  146. 146.
    Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1(3):169–178PubMedGoogle Scholar
  147. 147.
    Dallas SL et al (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277(24):21352–21360PubMedGoogle Scholar
  148. 148.
    Kakonen SM et al (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277(27):24571–24578PubMedGoogle Scholar
  149. 149.
    Kitazawa S, Kitazawa R (2002) RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol 198(2):228–236PubMedGoogle Scholar
  150. 150.
    Kondo H, Guo J, Bringhurst FR (2002) Cyclic adenosine monophosphate/protein kinase A mediates parathyroid hormone/parathyroid hormone-related protein receptor regulation of osteoclastogenesis and expression of RANKL and osteoprotegerin mRNAs by marrow stromal cells. J Bone Miner Res 17(9):1667–1679PubMedGoogle Scholar
  151. 151.
    Gallwitz WE, Guise TA, Mundy GR (2002) Guanosine nucleotides inhibit different syndromes of PTHrP excess caused by human cancers in vivo. J Clin Invest 110(10):1559–1572PubMedGoogle Scholar
  152. 152.
    Javelaud D et al (2007) Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res 67(5):2317–2324PubMedGoogle Scholar
  153. 153.
    Alexaki VI et al (2010) GLI2-mediated melanoma invasion and metastasis. J Natl Cancer Inst 102(15):1148–1159PubMedGoogle Scholar
  154. 154.
    Gazzerro E, Canalis E (2006) Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 7(1–2):51–65PubMedGoogle Scholar
  155. 155.
    Katsuno Y et al (2008) Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 27(49):6322–6333PubMedGoogle Scholar
  156. 156.
    Lai TH et al (2008) Osteoblasts-derived BMP-2 enhances the motility of prostate cancer cells via activation of integrins. Prostate 68(12):1341–1353PubMedGoogle Scholar
  157. 157.
    Virk MS et al (2009) Influence of simultaneous targeting of the bone morphogenetic protein pathway and RANK/RANKL axis in osteolytic prostate cancer lesion in bone. Bone 44(1):160–167PubMedGoogle Scholar
  158. 158.
    Hauschka PV et al (1986) Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem 261(27):12665–12674PubMedGoogle Scholar
  159. 159.
    Goya M et al (2004) Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-such as growth factors. Cancer Res 64(17):6252–6258PubMedGoogle Scholar
  160. 160.
    van Golen CM et al (2006) Insulin-such as growth factor-I receptor expression regulates neuroblastoma metastasis to bone. Cancer Res 66(13):6570–6578PubMedGoogle Scholar
  161. 161.
    Kingsley LA et al (2007) Molecular biology of bone metastasis. Mol Cancer Ther 6(10):2609–2617PubMedGoogle Scholar
  162. 162.
    Zhong H et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835PubMedGoogle Scholar
  163. 163.
    Le QT, Denko NC, Giaccia AJ (2004) Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23(3–4):293–310PubMedGoogle Scholar
  164. 164.
    Garayoa M et al (2000) Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol 14(6):848–862PubMedGoogle Scholar
  165. 165.
    McMahon S et al (2006) Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 281(34):24171–24181PubMedGoogle Scholar
  166. 166.
    Hiraga T et al (2007) Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res 67(9):4157–4163PubMedGoogle Scholar
  167. 167.
    Brandao-Burch A et al (2005) Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int 77(3):167–174PubMedGoogle Scholar
  168. 168.
    Webb SD, Sherratt JA, Fish RG (1999) Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model. Clin Exp Metastasis 17(5):397–407PubMedGoogle Scholar
  169. 169.
    Shannon AM et al (2003) Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 29(4):297–307PubMedGoogle Scholar
  170. 170.
    Berger CE et al (2001) Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium. J Bone Miner Res 16(11):2092–2102PubMedGoogle Scholar
  171. 171.
    Chattopadhyay N (2006) Effects of calcium-sensing receptor on the secretion of parathyroid hormone-related peptide and its impact on humoral hypercalcemia of malignancy. Am J Physiol Endocrinol Metab 290(5):E761–E770PubMedGoogle Scholar
  172. 172.
    Sanders JL et al (2000) Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology 141(12):4357–4364PubMedGoogle Scholar
  173. 173.
    Sanders JL et al (2001) Ca(2+)-sensing receptor expression and PTHrP secretion in PC-3 human prostate cancer cells. Am J Physiol Endocrinol Metab 281(6):E1267–E1274PubMedGoogle Scholar
  174. 174.
    Liao J et al (2006) Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res 66(18):9065–9073PubMedGoogle Scholar
  175. 175.
    Mihai R et al (2006) Expression of the calcium receptor in human breast cancer–a potential new marker predicting the risk of bone metastases. Eur J Surg Oncol 32(5):511–515PubMedGoogle Scholar
  176. 176.
    Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6(2):93–106PubMedGoogle Scholar
  177. 177.
    Yin T, Li L (2006) The stem cell niches in bone. J Clin Invest 116(5):1195–1201PubMedGoogle Scholar
  178. 178.
    Shiozawa Y, et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121(4):1298–1312Google Scholar
  179. 179.
    Kaplan RN et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827PubMedGoogle Scholar
  180. 180.
    Roelofs AJ et al (2006) Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 12(20 Pt 2):6222s–6230sPubMedGoogle Scholar
  181. 181.
    Fizazi K et al (2009) Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 27(10):1564–1571PubMedGoogle Scholar
  182. 182.
    Mohammad KS et al (2011) TGF-beta-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Res 71(1):175–184PubMedGoogle Scholar
  183. 183.
    Buijs JT et al (2007) BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am J Pathol 171(3):1047–1057PubMedGoogle Scholar
  184. 184.
    Coenegrachts L et al (2010) Anti-placental growth factor reduces bone metastasis by blocking tumor cell engraftment and osteoclast differentiation. Cancer Res 70(16):6537–6547PubMedGoogle Scholar
  185. 185.
    Carducci MA, Jimeno A (2006) Targeting bone metastasis in prostate cancer with endothelin receptor antagonists. Clin Cancer Res 12(20 Pt 2):6296s–6300sPubMedGoogle Scholar
  186. 186.
    Zhao Y et al (2007) Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 67(12):5821–5830PubMedGoogle Scholar
  187. 187.
    Mori Y et al (2004) Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 104(7):2149–2154PubMedGoogle Scholar
  188. 188.
    Petit I et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3(7):687–694PubMedGoogle Scholar
  189. 189.
    Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):1901–1910PubMedGoogle Scholar
  190. 190.
    Abkowitz JL et al (2003) Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 102(4):1249–1253PubMedGoogle Scholar
  191. 191.
    Azab AK et al (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113(18):4341–4351PubMedGoogle Scholar
  192. 192.
    Nervi B et al (2009) Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113(24):6206–6214PubMedGoogle Scholar
  193. 193.
    Burger JA, Stewart DJ (2009) CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opin Investig Drugs 18(4):481–490PubMedGoogle Scholar
  194. 194.
    Hastie C et al (2008) Interferon-gamma reduces cell surface expression of annexin 2 and suppresses the invasive capacity of prostate cancer cells. J Biol Chem 283(18):12595–12603PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anjali Mishra
    • 1
  • Yusuke Shiozawa
    • 2
  • Kenneth J. Pienta
    • 3
  • Russell S. Taichman
    • 2
    • 4
  1. 1.Department of Biologics and Materials SciencesUniversity of Michigan School of DentistryAnn ArborUSA
  2. 2.Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborUSA
  3. 3.Departments of Urology and Internal MedicineUniversity of Michigan Medical SchoolAnn ArborUSA
  4. 4.University of Michigan Dental SchoolAnn ArborUSA

Personalised recommendations