Cancer Microenvironment

, Volume 4, Issue 3, pp 361–375 | Cite as

Immunosuppressive Tumor Microenvironment in Cervical Cancer Patients



Cervical cancer is caused by Human papillomavirus (HPV) in virtually all cases. These HPV-induced cancers express the viral oncogenes E6 and E7 and are therefore potentially recognized by the immune system. Despite the abundant presence of these foreign antigens, the immune system is unable to cope with the tumor. Due to the constant immunological pressure, cervical cancers can evolve different immune evasion strategies, which will be described in the current review. Several approaches for immunotherapy of cervical cancer are currently under development, which aim at inducing strong HPV-specific immunity. Besides the reinforcement of potent anti-tumor immune responses, immunotherapy could also enhance HPV-specific T regulatory cells. Supplementary strategies that neutralize an immunosuppressive milieu may have great potential. These strategies are discussed as well.


Cervical Cancer Human papilloma virus Immune response Immune evasion T regulatory cell 



Human papilloma virus


Low-grade squamous intraepithelial lesion


High-grade squamous intraepithelial lesion


Interferon γ


Interleukin 5


Cervical cancer


Cytotoxic T lymphocyte

NK cell

Natural killer cell


FLICE-inhibitory protein


Indoleamine 2,3-dioxygenase


Vascuar endotheial growth factor


Tumor growth factor β


Regulatory T cells


Interferon regulatory factor


Tumor-associated macrophage


Dedritic cell


Myeloid derived suppressor cells


Programmed death 1


Antigen presenting cell


  1. 1.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19PubMedCrossRefGoogle Scholar
  2. 2.
    Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55(4):244–265PubMedCrossRefGoogle Scholar
  3. 3.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108PubMedCrossRefGoogle Scholar
  4. 4.
    Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, Tortolero-Luna G, Kjaer SK, Munoz N (2008) Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine 26(Suppl 10):K1–16PubMedCrossRefGoogle Scholar
  5. 5.
    zur Hausen H (1996) Papillomavirus infections–a major cause of human cancers. Biochim Biophys Acta 1288(2):F55–78PubMedGoogle Scholar
  6. 6.
    zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2(5):342–350PubMedCrossRefGoogle Scholar
  7. 7.
    Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R (1989) The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63(10):4417–4421PubMedGoogle Scholar
  8. 8.
    Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248(4951):76–79PubMedCrossRefGoogle Scholar
  9. 9.
    Jackson S, Harwood C, Thomas M, Banks L, Storey A (2000) Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 14(23):3065–3073PubMedCrossRefGoogle Scholar
  10. 10.
    Veldman T, Horikawa I, Barrett JC, Schlegel R (2001) Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 75(9):4467–4472PubMedCrossRefGoogle Scholar
  11. 11.
    Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243(4893):934–937PubMedCrossRefGoogle Scholar
  12. 12.
    Zerfass K, Schulze A, Spitkovsky D, Friedman V, Henglein B, Jansen-Durr P (1995) Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol 69(10):6389–6399PubMedGoogle Scholar
  13. 13.
    Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S (2007) Human papillomavirus and cervical cancer. Lancet 370(9590):890–907PubMedCrossRefGoogle Scholar
  14. 14.
    Koutsky L (1997) Epidemiology of genital human papillomavirus infection. Am J Med 102(5A):3–8PubMedCrossRefGoogle Scholar
  15. 15.
    Evander M, Edlund K, Gustafsson A, Jonsson M, Karlsson R, Rylander E, Wadell G (1995) Human papillomavirus infection is transient in young women: a population-based cohort study. J Infect Dis 171(4):1026–1030PubMedCrossRefGoogle Scholar
  16. 16.
    Barron BA, Cahill MC, Richart RM (1978) A statistical model of the natural history of cervical neoplastic disease: the duration of carcinoma in situ. Gynecol Oncol 6(2):196–205PubMedCrossRefGoogle Scholar
  17. 17.
    Kinlen LJ, Spriggs AI (1978) Women with positive cervical smears but without surgical intervention. A follow-up study. Lancet 2(8087):463–465PubMedCrossRefGoogle Scholar
  18. 18.
    Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, zur Hausen H (1985) Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314(6006):111–114PubMedCrossRefGoogle Scholar
  19. 19.
    Wentzensen N, Vinokurova S, von Knebel DM (2004) Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res 64(11):3878–3884PubMedCrossRefGoogle Scholar
  20. 20.
    Hopman AH, Smedts F, Dignef W, Ummelen M, Sonke G, Mravunac M, Vooijs GP, Speel EJ, Ramaekers FC (2004) Transition of high-grade cervical intraepithelial neoplasia to micro-invasive carcinoma is characterized by integration of HPV 16/18 and numerical chromosome abnormalities. J Pathol 202(1):23–33PubMedCrossRefGoogle Scholar
  21. 21.
    Chen CM, Shyu MP, Au LC, Chu HW, Cheng WT, Choo KB (1994) Analysis of deletion of the integrated human papillomavirus 16 sequence in cervical cancer: a rapid multiplex polymerase chain reaction approach. J Med Virol 44(2):206–211PubMedCrossRefGoogle Scholar
  22. 22.
    Goodwin EC, DiMaio D (2000) Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA 97(23):12513–12518PubMedCrossRefGoogle Scholar
  23. 23.
    de Jong A, van der Burg SH, Kwappenberg KM, van der Hulst JM, Franken KL, Geluk A, van Meijgaarden KE, Drijfhout JW, Kenter G, Vermeij P, Melief CJ, Offringa R (2002) Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res 62(2):472–479PubMedGoogle Scholar
  24. 24.
    Welters MJ, de Jong A, van den Eeden SJ, van der Hulst JM, Kwappenberg KM, Hassane S, Franken KL, Drijfhout JW, Fleuren GJ, Kenter G, Melief CJ, Offringa R, van der Burg SH (2003) Frequent display of human papillomavirus type 16 E6-specific memory t-Helper cells in the healthy population as witness of previous viral encounter. Cancer Res 63(3):636–641PubMedGoogle Scholar
  25. 25.
    de Jong A, van Poelgeest MI, van der Hulst JM, Drijfhout JW, Fleuren GJ, Melief CJ, Kenter G, Offringa R, van der Burg SH (2004) Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res 64(15):5449–5455PubMedCrossRefGoogle Scholar
  26. 26.
    Welters MJ, van der Logt P, van den Eeden SJ, Kwappenberg KM, Drijfhout JW, Fleuren GJ, Kenter GG, Melief CJ, van der Burg SH, Offringa R (2006) Detection of human papillomavirus type 18 E6 and E7-specific CD4+ T-helper 1 immunity in relation to health versus disease. Int J Cancer 118(4):950–956PubMedCrossRefGoogle Scholar
  27. 27.
    van der Burg SH, Ressing ME, Kwappenberg KM, de Jong A, Straathof K, de Jong J, Geluk A, van Meijgaarden KE, Franken KL, Ottenhoff TH, Fleuren GJ, Kenter G, Melief CJ, Offringa R (2001) Natural T-helper immunity against human papillomavirus type 16 (HPV16) E7-derived peptide epitopes in patients with HPV16-positive cervical lesions: identification of 3 human leukocyte antigen class II-restricted epitopes. Int J Cancer 91(5):612–618PubMedCrossRefGoogle Scholar
  28. 28.
    Bontkes HJ, de Gruijl TD, Bijl A, Verheijen RH, Meijer CJ, Scheper RJ, Stern PL, Burns JE, Maitland NJ, Walboomers JM (1999) Human papillomavirus type 16 E2-specific T-helper lymphocyte responses in patients with cervical intraepithelial neoplasia. J Gen Virol 80(Pt 9):2453–2459PubMedGoogle Scholar
  29. 29.
    Woo YL, van den Hende M, Sterling JC, Coleman N, Crawford RA, Kwappenberg KM, Stanley MA, van der Burg SH (2010) A prospective study on the natural course of low-grade squamous intraepithelial lesions and the presence of HPV16 E2-, E6- and E7-specific T-cell responses. Int J Cancer 126(1):133–141. doi:10.1002/ijc.24804 PubMedCrossRefGoogle Scholar
  30. 30.
    De Vos van Steenwijk PJ, Piersma SJ, Welters MJ, van der Hulst JM, Fleuren G, Hellebrekers BW, Kenter GG, van der Burg SH (2008) Surgery followed by persistence of high-grade squamous intraepithelial lesions is associated with the induction of a dysfunctional HPV16-specific T-cell response. Clin Cancer Res 14(22):7188–7195PubMedCrossRefGoogle Scholar
  31. 31.
    Luxton JC, Nath R, Derias N, Herbert A, Shepherd PS (2003) Human papillomavirus type 16-specific T cell responses and their association with recurrence of cervical disease following treatment. J Gen Virol 84(Pt 5):1063–1070PubMedCrossRefGoogle Scholar
  32. 32.
    de Gruijl TD, Bontkes HJ, Stukart MJ, Walboomers JM, Remmink AJ, Verheijen RH, Helmerhorst TJ, Meijer CJ, Scheper RJ (1996) T cell proliferative responses against human papillomavirus type 16 E7 oncoprotein are most prominent in cervical intraepithelial neoplasia patients with a persistent viral infection. J Gen Virol 77(Pt 9):2183–2191PubMedCrossRefGoogle Scholar
  33. 33.
    de Gruijl TD, Bontkes HJ, Walboomers JM, Stukart MJ, Doekhie FS, Remmink AJ, Helmerhorst TJ, Verheijen RH, Duggan-Keen MF, Stern PL, Meijer CJ, Scheper RJ (1998) Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia: a longitudinal study. Cancer Res 58(8):1700–1706PubMedGoogle Scholar
  34. 34.
    Tsukui T, Hildesheim A, Schiffman MH, Lucci J 3rd, Contois D, Lawler P, Rush BB, Lorincz AT, Corrigan A, Burk RD, Qu W, Marshall MA, Mann D, Carrington M, Clerici M, Shearer GM, Carbone DP, Scott DR, Houghten RA, Berzofsky JA (1996) Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides: correlation with cervical pathology. Cancer Res 56(17):3967–3974PubMedGoogle Scholar
  35. 35.
    Heusinkveld M, Welters MJ, van Poelgeest MI, van der Hulst JM, Melief CJ, Fleuren GJ, Kenter GG, van der Burg SH (2010) The detection of circulating Human Papillomavirus (HPV)-specific T cells is associated with improved survival of patients with deeply infiltrating tumors. Int J Cancer. doi:10.1002/ijc.25361 PubMedGoogle Scholar
  36. 36.
    Ressing ME, van Driel WJ, Celis E, Sette A, Brandt MP, Hartman M, Anholts JD, Schreuder GM, ter Harmsel WB, Fleuren GJ, Trimbos BJ, Kast WM, Melief CJ (1996) Occasional memory cytotoxic T-cell responses of patients with human papillomavirus type 16-positive cervical lesions against a human leukocyte antigen-A *0201-restricted E7-encoded epitope. Cancer Res 56(3):582–588PubMedGoogle Scholar
  37. 37.
    Bontkes HJ, de Gruijl TD, van den Muysenberg AJ, Verheijen RH, Stukart MJ, Meijer CJ, Scheper RJ, Stacey SN, Duggan-Keen MF, Stern PL, Man S, Borysiewicz LK, Walboomers JM (2000) Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes in women with cervical neoplasia. Int J Cancer 88(1):92–98PubMedCrossRefGoogle Scholar
  38. 38.
    Nimako M, Fiander AN, Wilkinson GW, Borysiewicz LK, Man S (1997) Human papillomavirus-specific cytotoxic T lymphocytes in patients with cervical intraepithelial neoplasia grade III. Cancer Res 57(21):4855–4861PubMedGoogle Scholar
  39. 39.
    Youde SJ, Dunbar PR, Evans EM, Fiander AN, Borysiewicz LK, Cerundolo V, Man S (2000) Use of fluorogenic histocompatibility leukocyte antigen-A*0201/HPV 16 E7 peptide complexes to isolate rare human cytotoxic T-lymphocyte-recognizing endogenous human papillomavirus antigens. Cancer Res 60(2):365–371PubMedGoogle Scholar
  40. 40.
    Nakagawa M, Stites DP, Farhat S, Sisler JR, Moss B, Kong F, Moscicki AB, Palefsky JM (1997) Cytotoxic T lymphocyte responses to E6 and E7 proteins of human papillomavirus type 16: relationship to cervical intraepithelial neoplasia. J Infect Dis 175(4):927–931PubMedCrossRefGoogle Scholar
  41. 41.
    Nakagawa M, Stites DP, Palefsky JM, Kneass Z, Moscicki AB (1999) CD4-positive and CD8-positive cytotoxic T lymphocytes contribute to human papillomavirus type 16 E6 and E7 responses. Clin Diagn Lab Immunol 6(4):494–498PubMedGoogle Scholar
  42. 42.
    Melief CJ, van der Burg SH (2008) Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8(5):351–360PubMedCrossRefGoogle Scholar
  43. 43.
    Piersma SJ, Welters MJ, van der Hulst JM, Kloth JN, Kwappenberg KM, Trimbos BJ, Melief CJ, Hellebrekers BW, Fleuren GJ, Kenter GG, Offringa R, van der Burg SH (2007) Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and -DP as a restriction element. Int J CancerGoogle Scholar
  44. 44.
    Evans EM, Man S, Evans AS, Borysiewicz LK (1997) Infiltration of cervical cancer tissue with human papillomavirus-specific cytotoxic T-lymphocytes. Cancer Res 57(14):2943–2950PubMedGoogle Scholar
  45. 45.
    Oerke S, Hohn H, Zehbe I, Pilch H, Schicketanz KH, Hitzler WE, Neukirch C, Freitag K, Maeurer MJ (2005) Naturally processed and HLA-B8-presented HPV16 E7 epitope recognized by T cells from patients with cervical cancer. Int J Cancer 114(5):766–778PubMedCrossRefGoogle Scholar
  46. 46.
    Hohn H, Pilch H, Gunzel S, Neukirch C, Freitag K, Necker A, Maeurer MJ (2000) Human papillomavirus type 33 E7 peptides presented by HLA-DR*0402 to tumor-infiltrating T cells in cervical cancer. J Virol 74(14):6632–6636PubMedCrossRefGoogle Scholar
  47. 47.
    Hohn H, Pilch H, Gunzel S, Neukirch C, Hilmes C, Kaufmann A, Seliger B, Maeurer MJ (1999) CD4+ tumor-infiltrating lymphocytes in cervical cancer recognize HLA-DR-restricted peptides provided by human papillomavirus-E7. J Immunol 163(10):5715–5722PubMedGoogle Scholar
  48. 48.
    de Vos van Steenwijk PJ, Heusinkveld M, Ramwadhdoebe TH, Lowik MJ, van der Hulst JM, Goedemans R, Piersma SJ, Kenter GG, van der Burg SH (2011) An unexpectedly large polyclonal repertoire of HPV-specific T cells is poised for action in patients with cervical cancer. Cancer Res. 70(7):2707–2717. doi:10.1158/0008-5472.CAN-09-4299
  49. 49.
    Jordanova ES, Gorter A, Ayachi O, Prins F, Durrant LG, Kenter GG, van der Burg SH, Fleuren GJ (2008) Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res 14(7):2028–2035PubMedCrossRefGoogle Scholar
  50. 50.
    Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, Melief CJ, Kenter GG, Fleuren GJ, Offringa R, van der Burg SH (2007) High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 67(1):354–361PubMedCrossRefGoogle Scholar
  51. 51.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRefGoogle Scholar
  52. 52.
    Biddison WE, Palmer JC (1977) Development of tumor cell resistance to syngeneic cell-mediated cytotoxicity during growth of ascitic mastocytoma P815Y. Proc Natl Acad Sci USA 74(1):329–333PubMedCrossRefGoogle Scholar
  53. 53.
    Uyttenhove C, Maryanski J, Boon T (1983) Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J Exp Med 157(3):1040–1052PubMedCrossRefGoogle Scholar
  54. 54.
    Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273PubMedCrossRefGoogle Scholar
  55. 55.
    Stoler MH, Rhodes CR, Whitbeck A, Wolinsky SM, Chow LT, Broker TR (1992) Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol 23(2):117–128PubMedCrossRefGoogle Scholar
  56. 56.
    van den Brule AJ, Cromme FV, Snijders PJ, Smit L, Oudejans CB, Baak JP, Meijer CJ, Walboomers JM (1991) Nonradioactive RNA in situ hybridization detection of human papillomavirus 16-E7 transcripts in squamous cell carcinomas of the uterine cervix using confocal laser scan microscopy. Am J Pathol 139(5):1037–1045PubMedGoogle Scholar
  57. 57.
    Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ (1998) How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol 10(5):581–587PubMedCrossRefGoogle Scholar
  58. 58.
    Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71(6):907–920PubMedGoogle Scholar
  59. 59.
    Reed JC, Cuddy M, Slabiak T, Croce CM, Nowell PC (1988) Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 336(6196):259–261PubMedCrossRefGoogle Scholar
  60. 60.
    Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A (1999) The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190(7):1025–1032PubMedCrossRefGoogle Scholar
  61. 61.
    Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R (1999) Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 190(7):1033–1038PubMedCrossRefGoogle Scholar
  62. 62.
    Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, Offringa R (2001) Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA 98(20):11515–11520PubMedCrossRefGoogle Scholar
  63. 63.
    Zhou JH, Chen HZ, Ye F, Lu WG, Xie X (2006) Fas-mediated pathway and apoptosis in normal cervix, cervical intraepithelial neoplasia and cervical squamous cancer. Oncol Rep 16(2):307–311PubMedGoogle Scholar
  64. 64.
    Kloth JN, Gorter A, Fleuren GJ, Oosting J, Uljee S, ter Haar N, Dreef EJ, Kenter GG, Jordanova ES (2008) Elevated expression of SerpinA1 and SerpinA3 in HLA-positive cervical carcinoma. J Pathol 215(3):222–230PubMedCrossRefGoogle Scholar
  65. 65.
    Emoto T, Nakamura K, Nagasaka Y, Numa F, Suminami Y, Kato H (1998) Alpha 1-antichymotrypsin inhibits chymotrypsin-induced apoptosis in rat hepatoma cells. Apoptosis 3(3):155–160PubMedCrossRefGoogle Scholar
  66. 66.
    Poe M, Blake JT, Boulton DA, Gammon M, Sigal NH, Wu JK, Zweerink HJ (1991) Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J Biol Chem 266(1):98–103PubMedGoogle Scholar
  67. 67.
    Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81PubMedCrossRefGoogle Scholar
  68. 68.
    Seliger B, Maeurer MJ, Ferrone S (1997) TAP off–tumors on. Immunol Today 18(6):292–299PubMedCrossRefGoogle Scholar
  69. 69.
    Evans M, Borysiewicz LK, Evans AS, Rowe M, Jones M, Gileadi U, Cerundolo V, Man S (2001) Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. J Immunol 167(9):5420–5428PubMedGoogle Scholar
  70. 70.
    Vambutas A, DeVoti J, Pinn W, Steinberg BM, Bonagura VR (2001) Interaction of human papillomavirus type 11 E7 protein with TAP-1 results in the reduction of ATP-dependent peptide transport. Clin Immunol 101(1):94–99PubMedCrossRefGoogle Scholar
  71. 71.
    Vambutas A, Bonagura VR, Steinberg BM (2000) Altered expression of TAP-1 and major histocompatibility complex class I in laryngeal papillomatosis: correlation of TAP-1 with disease. Clin Diagn Lab Immunol 7(1):79–85PubMedGoogle Scholar
  72. 72.
    Georgopoulos NT, Proffitt JL, Blair GE (2000) Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 19(42):4930–4935PubMedCrossRefGoogle Scholar
  73. 73.
    Ashrafi GH, Haghshenas MR, Marchetti B, O’Brien PM, Campo MS (2005) E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int J Cancer 113(2):276–283PubMedCrossRefGoogle Scholar
  74. 74.
    Bontkes HJ, Walboomers JM, Meijer CJ, Helmerhorst TJ, Stern PL (1998) Specific HLA class I down-regulation is an early event in cervical dysplasia associated with clinical progression. Lancet 351(9097):187–188PubMedCrossRefGoogle Scholar
  75. 75.
    Cromme FV, Airey J, Heemels MT, Ploegh HL, Keating PJ, Stern PL, Meijer CJ, Walboomers JM (1994) Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J Exp Med 179(1):335–340PubMedCrossRefGoogle Scholar
  76. 76.
    Keating PJ, Cromme FV, Duggan-Keen M, Snijders PJ, Walboomers JM, Hunter RD, Dyer PA, Stern PL (1995) Frequency of down-regulation of individual HLA-A and -B alleles in cervical carcinomas in relation to TAP-1 expression. Br J Cancer 72(2):405–411PubMedCrossRefGoogle Scholar
  77. 77.
    Connor ME, Stern PL (1990) Loss of MHC class-I expression in cervical carcinomas. Int J Cancer 46(6):1029–1034PubMedCrossRefGoogle Scholar
  78. 78.
    Cromme FV, Meijer CJ, Snijders PJ, Uyterlinde A, Kenemans P, Helmerhorst T, Stern PL, van den Brule AJ, Walboomers JM (1993) Analysis of MHC class I and II expression in relation to presence of HPV genotypes in premalignant and malignant cervical lesions. Br J Cancer 67(6):1372–1380PubMedCrossRefGoogle Scholar
  79. 79.
    Koopman LA, Corver WE, van der Slik AR, Giphart MJ, Fleuren GJ (2000) Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med 191(6):961–976PubMedCrossRefGoogle Scholar
  80. 80.
    Hilders CG, Munoz IM, Nooyen Y, Fleuren GJ (1995) Altered HLA expression by metastatic cervical carcinoma cells as a factor in impaired immune surveillance. Gynecol Oncol 57(3):366–375PubMedCrossRefGoogle Scholar
  81. 81.
    van Driel WJ, Tjiong MY, Hilders CG, Trimbos BJ, Fleuren GJ (1996) Association of allele-specific HLA expression and histopathologic progression of cervical carcinoma. Gynecol Oncol 62(1):33–41PubMedCrossRefGoogle Scholar
  82. 82.
    Mehta AM, Jordanova ES, Kenter GG, Ferrone S, Fleuren GJ (2008) Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. Cancer Immunol Immunother 57(2):197–206PubMedCrossRefGoogle Scholar
  83. 83.
    Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296PubMedCrossRefGoogle Scholar
  84. 84.
    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800PubMedGoogle Scholar
  85. 85.
    Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8(6):467–477PubMedCrossRefGoogle Scholar
  86. 86.
    Pentcheva-Hoang T, Corse E, Allison JP (2009) Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol Rev 229(1):67–87. doi:10.1111/j.1600-065X.2009.00763.x PubMedCrossRefGoogle Scholar
  87. 87.
    Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104(9):3360–3365. doi:10.1073/pnas.0611533104 PubMedCrossRefGoogle Scholar
  88. 88.
    Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, Krejci KG, Lobo JR, Sengupta S, Chen L, Zincke H, Blute ML, Strome SE, Leibovich BC, Kwon ED (2004) Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101(49):17174–17179. doi:10.1073/pnas.0406351101 PubMedCrossRefGoogle Scholar
  89. 89.
    Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, Chen L, Zincke H, Blute ML, Leibovich BC, Kwon ED (2005) Costimulatory molecule B7-H1 in primary and metastatic clear cell renal cell carcinoma. Cancer 104(10):2084–2091. doi:10.1002/cncr.21470 PubMedCrossRefGoogle Scholar
  90. 90.
    Thompson RH, Kuntz SM, Leibovich BC, Dong HD, Lohse CM, Webster WS, Sengupta S, Frank I, Parker AS, Zincke H, Blute ML, Sebo TJ, Cheville JC, Kwon ED (2006) Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res 66(7):3381–3385. doi:Doi10.1158/0008-5472.Can-05-4303 PubMedCrossRefGoogle Scholar
  91. 91.
    Nakanishi J, Wada Y, Matsumoto K, Azuma M, Kikuchi K, Ueda S (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56(8):1173–1182. doi:10.1007/s00262-006-0266-z PubMedCrossRefGoogle Scholar
  92. 92.
    Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, Nakajima Y (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13(7):2151–2157. doi:10.1158/1078-0432.CCR-06-2746 PubMedCrossRefGoogle Scholar
  93. 93.
    Wu C, Zhu Y, Jiang J, Zhao J, Zhang XG, Xu N (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108(1):19–24. doi:10.1016/j.acthis.2006.01.003 PubMedCrossRefGoogle Scholar
  94. 94.
    Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N, Mizuno T, Yoriki R, Kashizuka H, Yane K, Tsushima F, Otsuki N, Yagita H, Azuma M, Nakajima Y (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11(8):2947–2953. doi:10.1158/1078-0432.CCR-04-1469 PubMedCrossRefGoogle Scholar
  95. 95.
    Karim R, Jordanova ES, Piersma SJ, Kenter GG, Chen L, Boer JM, Melief CJ, van der Burg SH (2009) Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 15(20):6341–6347. doi:10.1158/1078-0432.CCR-09-1652 PubMedCrossRefGoogle Scholar
  96. 96.
    Zang X, Allison JP (2007) The B7 family and cancer therapy: costimulation and coinhibition. Clin Cancer Res 13(18 Pt 1):5271–5279PubMedCrossRefGoogle Scholar
  97. 97.
    Crispen PL, Sheinin Y, Roth TJ, Lohse CM, Kuntz SM, Frigola X, Thompson RH, Boorjian SA, Dong H, Leibovich BC, Blute ML, Kwon ED (2008) Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin Cancer Res 14(16):5150–5157PubMedCrossRefGoogle Scholar
  98. 98.
    Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24(5):242–248PubMedCrossRefGoogle Scholar
  99. 99.
    Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Gobel G, Margreiter R, Konigsrainer A, Fuchs D, Amberger A (2006) Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 12(4):1144–1151PubMedCrossRefGoogle Scholar
  100. 100.
    Katz JB, Muller AJ, Prendergast GC (2008) Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev 222:206–221PubMedCrossRefGoogle Scholar
  101. 101.
    Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117(5):1147–1154PubMedCrossRefGoogle Scholar
  102. 102.
    Nakamura T, Shima T, Saeki A, Hidaka T, Nakashima A, Takikawa O, Saito S (2007) Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci 98(6):874–881PubMedCrossRefGoogle Scholar
  103. 103.
    Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66(11):5527–5536PubMedCrossRefGoogle Scholar
  104. 104.
    Massague J (2008) TGFbeta in Cancer. Cell 134(2):215–230PubMedCrossRefGoogle Scholar
  105. 105.
    Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146PubMedCrossRefGoogle Scholar
  106. 106.
    Hazelbag S, Kenter GG, Gorter A, Fleuren GJ (2004) Prognostic relevance of TGF-beta1 and PAI-1 in cervical cancer. Int J Cancer 112(6):1020–1028PubMedCrossRefGoogle Scholar
  107. 107.
    Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, Weinreb PH, Fleuren GJ (2007) Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol 212(3):316–324PubMedCrossRefGoogle Scholar
  108. 108.
    Hazelbag S, Gorter A, Kenter GG, van den Broek L, Fleuren G (2002) Transforming growth factor-beta1 induces tumor stroma and reduces tumor infiltrate in cervical cancer. Hum Pathol 33(12):1193–1199PubMedCrossRefGoogle Scholar
  109. 109.
    Ronco LV, Karpova AY, Vidal M, Howley PM (1998) Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 12(13):2061–2072PubMedCrossRefGoogle Scholar
  110. 110.
    Perea SE, Massimi P, Banks L (2000) Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1. Int J Mol Med 5(6):661–666PubMedGoogle Scholar
  111. 111.
    Nees M, Geoghegan JM, Hyman T, Frank S, Miller L, Woodworth CD (2001) Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J Virol 75(9):4283–4296. doi:10.1128/JVI.75.9.4283-4296.2001 PubMedCrossRefGoogle Scholar
  112. 112.
    Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122PubMedCrossRefGoogle Scholar
  113. 113.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555PubMedCrossRefGoogle Scholar
  114. 114.
    Zijlmans HJ, Fleuren GJ, Baelde HJ, Eilers PH, Kenter GG, Gorter A (2006) The absence of CCL2 expression in cervical carcinoma is associated with increased survival and loss of heterozygosity at 17q11.2. J Pathol 208(4):507–517PubMedCrossRefGoogle Scholar
  115. 115.
    Zijlmans HJ, Fleuren GJ, Baelde HJ, Eilers PH, Kenter GG, Gorter A (2007) Role of tumor-derived proinflammatory cytokines GM-CSF, TNF-alpha, and IL-12 in the migration and differentiation of antigen-presenting cells in cervical carcinoma. Cancer 109(3):556–565PubMedCrossRefGoogle Scholar
  116. 116.
    Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952PubMedCrossRefGoogle Scholar
  117. 117.
    Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29(3):372–383PubMedCrossRefGoogle Scholar
  118. 118.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev ImmunolGoogle Scholar
  119. 119.
    Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553. doi:10.1200/JCO.2006.08.5829 PubMedCrossRefGoogle Scholar
  120. 120.
    Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1(1):95–103PubMedGoogle Scholar
  121. 121.
    Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243PubMedCrossRefGoogle Scholar
  122. 122.
    Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5(8):641–654PubMedCrossRefGoogle Scholar
  123. 123.
    Kusmartsev S, Gabrilovich DI (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55(3):237–245PubMedCrossRefGoogle Scholar
  124. 124.
    Fattorossi A, Battaglia A, Ferrandina G, Buzzonetti A, Legge F, Salutari V, Scambia G (2004) Lymphocyte composition of tumor draining lymph nodes from cervical and endometrial cancer patients. Gynecol Oncol 92(1):106–115PubMedCrossRefGoogle Scholar
  125. 125.
    Lu LF, Rudensky A (2009) Molecular orchestration of differentiation and function of regulatory T cells. Genes Dev 23(11):1270–1282. doi:10.1101/gad.1791009 PubMedCrossRefGoogle Scholar
  126. 126.
    Piersma SJ, Welters MJ, van der Burg SH (2008) Tumor-specific regulatory T cells in cancer patients. Hum Immunol 69(4–5):241–249. doi:10.1016/j.humimm.2008.02.005 PubMedCrossRefGoogle Scholar
  127. 127.
    Battaglia A, Buzzonetti A, Baranello C, Ferrandina G, Martinelli E, Fanfani F, Scambia G, Fattorossi A (2009) Metastatic tumour cells favour the generation of a tolerogenic milieu in tumour draining lymph node in patients with early cervical cancer. Cancer Immunol Immunother 58(9):1363–1373. doi:10.1007/s00262-008-0646-7 PubMedCrossRefGoogle Scholar
  128. 128.
    van der Burg SH, Piersma SJ, de Jong A, van der Hulst JM, Kwappenberg KM, van den Hende M, Welters MJ, Van Rood JJ, Fleuren GJ, Melief CJ, Kenter GG, Offringa R (2007) Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc Natl Acad Sci U S AGoogle Scholar
  129. 129.
    Piersma SJ, van der Hulst JM, Kwappenberg KM, Goedemans R, van der Minne CE, van der Burg SH (2010) Influenza matrix 1-specific human CD4(+) FOXP3(+) and FOXP3(−) regulatory T cells can be detected long after viral clearance. Eur J Immunol 40(11):3064–3074. doi:10.1002/eji.200940177 PubMedCrossRefGoogle Scholar
  130. 130.
    Woodman CB, Collins SI, Young LS (2007) The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 7(1):11–22. doi:10.1038/nrc2050 PubMedCrossRefGoogle Scholar
  131. 131.
    Fausch SC, Da Silva DM, Rudolf MP, Kast WM (2002) Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. J Immunol 169(6):3242–3249PubMedGoogle Scholar
  132. 132.
    Kanodia S, Fahey LM, Kast WM (2007) Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets 7(1):79–89PubMedCrossRefGoogle Scholar
  133. 133.
    Madkan VK, Cook-Norris RH, Steadman MC, Arora A, Mendoza N, Tyring SK (2007) The oncogenic potential of human papillomaviruses: a review on the role of host genetics and environmental cofactors. Br J Dermatol 157(2):228–241. doi:10.1111/j.1365-2133.2007.07961.x PubMedCrossRefGoogle Scholar
  134. 134.
    Molling JW, de Gruijl TD, Glim J, Moreno M, Rozendaal L, Meijer CJ, van den Eertwegh AJ, Scheper RJ, von Blomberg ME, Bontkes HJ (2007) CD4(+)CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int J Cancer 121(8):1749–1755. doi:10.1002/ijc.22894 PubMedCrossRefGoogle Scholar
  135. 135.
    Visser J, Nijman HW, Hoogenboom BN, Jager P, van Baarle D, Schuuring E, Abdulahad W, Miedema F, van der Zee AG, Daemen T (2007) Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia. Clin Exp Immunol 150(2):199–209. doi:10.1111/j.1365-2249.2007.03468.x PubMedCrossRefGoogle Scholar
  136. 136.
    Scott ME, Ma Y, Kuzmich L, Moscicki AB (2009) Diminished IFN-gamma and IL-10 and elevated Foxp3 mRNA expression in the cervix are associated with CIN 2 or 3. Int J Cancer 124(6):1379–1383. doi:10.1002/ijc.24117 PubMedCrossRefGoogle Scholar
  137. 137.
    Woo YL, Sterling J, Damay I, Coleman N, Crawford R, van der Burg SH, Stanley M (2008) Characterising the local immune responses in cervical intraepithelial neoplasia: a cross-sectional and longitudinal analysis. BJOG 115(13):1616–1621. doi:10.1111/j.1471-0528.2008.01936.x, discussion 1621–1612PubMedCrossRefGoogle Scholar
  138. 138.
    Jarboe EA, Liaw KL, Thompson LC, Heinz DE, Baker PL, McGregor JA, Dunn T, Woods JE, Shroyer KR (2002) Analysis of telomerase as a diagnostic biomarker of cervical dysplasia and carcinoma. Oncogene 21(4):664–673. doi:10.1038/sj.onc.1205073 PubMedCrossRefGoogle Scholar
  139. 139.
    Frost M, Bobak JB, Gianani R, Kim N, Weinrich S, Spalding DC, Cass LG, Thompson LC, Enomoto T, Uribe-Lopez D, Shroyer KR (2000) Localization of telomerase hTERT protein and hTR in benign mucosa, dysplasia, and squamous cell carcinoma of the cervix. Am J Clin Pathol 114(5):726–734. doi:10.1309/XWFE-ARMN-HG2D-AJYV PubMedCrossRefGoogle Scholar
  140. 140.
    Sano T, Oyama T, Kashiwabara K, Fukuda T, Nakajima T (1998) Expression status of p16 protein is associated with human papillomavirus oncogenic potential in cervical and genital lesions. Am J Pathol 153(6):1741–1748PubMedCrossRefGoogle Scholar
  141. 141.
    Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, Dallenbach-Hellweg G, Schmidt D, von Knebel DM (2001) Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92(2):276–284. doi:10.1002/ijc.1174 PubMedCrossRefGoogle Scholar
  142. 142.
    Finn OJ (2008) Cancer immunology. N Engl J Med 358(25):2704–2715PubMedCrossRefGoogle Scholar
  143. 143.
    Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Berends-van der Meer DM, Drijfhout JW, Valentijn AR, Wafelman AR, Oostendorp J, Fleuren GJ, Offringa R, Melief CJ, van der Burg SH (2008) Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 14(1):178–187. doi:10.1158/1078-0432.CCR-07-1880 PubMedCrossRefGoogle Scholar
  144. 144.
    Francois V, Ottaviani S, Renkvist N, Stockis J, Schuler G, Thielemans K, Colau D, Marchand M, Boon T, Lucas S, van der Bruggen P (2009) The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res 69(10):4335–4345. doi:10.1158/0008-5472.CAN-08-3726 PubMedCrossRefGoogle Scholar
  145. 145.
    Zhou G, Drake CG, Levitsky HI (2006) Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107(2):628–636PubMedCrossRefGoogle Scholar
  146. 146.
    Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ, van der Burg SH, Melief CJ (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 361(19):1838–1847. doi:10.1056/NEJMoa0810097 PubMedCrossRefGoogle Scholar
  147. 147.
    Welters MJ, Kenter GG, De Vos van Steenwijk PJ, Lowik MJ, der Meer DM Berends-van, Essahsah F, Stynenbosch LF, Vloon AP, Ramwadhdoebe TH, Piersma SJ, van der Hulst JM, Valentijn AR, Fathers LM, Drijfhout JW, Franken KL, Oostendorp J, Fleuren GJ, Melief CJ, van der Burg SH (2010) Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA 107(26):11895–11899, 10.1073/pnas.1006500107PubMedCrossRefGoogle Scholar
  148. 148.
    Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307PubMedCrossRefGoogle Scholar
  149. 149.
    Foss FM (2000) DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin Lymphoma 1(2):110–116, discussion 117PubMedCrossRefGoogle Scholar
  150. 150.
    Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110(9):3192–3201. doi:10.1182/blood-2007-06-094615 PubMedCrossRefGoogle Scholar
  151. 151.
    Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115(12):3623–3633. doi:10.1172/JCI25947 PubMedCrossRefGoogle Scholar
  152. 152.
    Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK, Clay TM (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112(3):610–618. doi:10.1182/blood-2008-01-135319 PubMedCrossRefGoogle Scholar
  153. 153.
    Mahnke K, Schonfeld K, Fondel S, Ring S, Karakhanova S, Wiedemeyer K, Bedke T, Johnson TS, Storn V, Schallenberg S, Enk AH (2007) Depletion of CD4 + CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120(12):2723–2733. doi:10.1002/ijc.22617 PubMedCrossRefGoogle Scholar
  154. 154.
    Attia P, Maker AV, Haworth LR, Rogers-Freezer L, Rosenberg SA (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28(6):582–592PubMedCrossRefGoogle Scholar
  155. 155.
    Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S, Waldmann TA, Pastan I (2000) Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 18(8):1622–1636PubMedGoogle Scholar
  156. 156.
    Powell DJ Jr, Felipe-Silva A, Merino MJ, Ahmadzadeh M, Allen T, Levy C, White DE, Mavroukakis S, Kreitman RJ, Rosenberg SA, Pastan I (2007) Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 179(7):4919–4928PubMedGoogle Scholar
  157. 157.
    Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105(7):2862–2868. doi:10.1182/blood-2004-06-2410 PubMedCrossRefGoogle Scholar
  158. 158.
    Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F, Lesokhin AM, Weinberg AD, Wolchok JD, Houghton AN (2009) OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med 206(5):1103–1116. doi:10.1084/jem.20082205 PubMedCrossRefGoogle Scholar
  159. 159.
    Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4 + CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34(2):336–344. doi:10.1002/eji.200324181 PubMedCrossRefGoogle Scholar
  160. 160.
    Vierboom MP, Bos GM, Ooms M, Offringa R, Melief CJ (2000) Cyclophosphamide enhances anti-tumor effect of wild-type p53-specific CTL. Int J Cancer 87(2):253–260. doi:10.1002/1097-0215(20000715)87:2<253::AID-IJC17>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  161. 161.
    Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4 + CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56(5):641–648. doi:10.1007/s00262-006-0225-8 PubMedCrossRefGoogle Scholar
  162. 162.
    Berd D, Mastrangelo MJ (1987) Effect of low dose cyclophosphamide on the immune system of cancer patients: reduction of T-suppressor function without depletion of the CD8+ subset. Cancer Res 47(12):3317–3321PubMedGoogle Scholar
  163. 163.
    Battaglia A, Buzzonetti A, Martinelli E, Fanelli M, Petrillo M, Ferrandina G, Scambia G, Fattorossi A (2010) Selective changes in the immune profile of tumor-draining lymph nodes after different neoadjuvant chemoradiation regimens for locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 76(5):1546–1553. doi:10.1016/j.ijrobp.2009.10.014 PubMedCrossRefGoogle Scholar
  164. 164.
    Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736PubMedCrossRefGoogle Scholar
  165. 165.
    Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, Toes RE, Offringa R, Melief CJ (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194(6):823–832PubMedCrossRefGoogle Scholar
  166. 166.
    van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190(3):355–366PubMedCrossRefGoogle Scholar
  167. 167.
    Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. doi:10.1084/jem.20082492 PubMedGoogle Scholar
  168. 168.
    Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165. doi:10.1111/j.1600-065X.2008.00649.x PubMedCrossRefGoogle Scholar
  169. 169.
    Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, Duray PH, Steinberg SM, Allison JP, Davis TA, Rosenberg SA (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100(14):8372–8377. doi:10.1073/pnas.1533209100 PubMedCrossRefGoogle Scholar
  170. 170.
    Klein O, Ebert LM, Nicholaou T, Browning J, Russell SE, Zuber M, Jackson HM, Dimopoulos N, Tan BS, Hoos A, Luescher IF, Davis ID, Chen W, Cebon J (2009) Melan-A-specific cytotoxic T cells are associated with tumor regression and autoimmunity following treatment with anti-CTLA-4. Clin Cancer Res 15(7):2507–2513. doi:10.1158/1078-0432.CCR-08-2424 PubMedCrossRefGoogle Scholar
  171. 171.
    Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, Ku GY, Jungbluth AA, Segal NH, Rasalan TS, Manukian G, Xu Y, Roman RA, Terzulli SL, Heywood M, Pogoriler E, Ritter G, Old LJ, Allison JP, Wolchok JD (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105(51):20410–20415. doi:10.1073/pnas.0810114105 PubMedCrossRefGoogle Scholar
  172. 172.
    Di Giacomo AM, Danielli R, Guidoboni M, Calabro L, Carlucci D, Miracco C, Volterrani L, Mazzei MA, Biagioli M, Altomonte M, Maio M (2009) Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother 58(8):1297–1306. doi:10.1007/s00262-008-0642-y PubMedCrossRefGoogle Scholar
  173. 173.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466 PubMedCrossRefGoogle Scholar
  174. 174.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704. doi:10.1146/annurev.immunol.26.021607.090331 PubMedCrossRefGoogle Scholar
  175. 175.
    Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, Koren-Michowitz M, Shimoni A, Nagler A (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14(10):3044–3051. doi:10.1158/1078-0432.CCR-07-4079 PubMedCrossRefGoogle Scholar
  176. 176.
    Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50PubMedCrossRefGoogle Scholar
  177. 177.
    Savage ND, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, Geluk A, Ottenhoff TH (2008) Human anti-inflammatory macrophages induce Foxp3+ GITR + CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181(3):2220–2226PubMedGoogle Scholar
  178. 178.
    Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117. doi:10.1146/annurev.immunol.021908.132544 PubMedCrossRefGoogle Scholar
  179. 179.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265. doi:10.1146/annurev.immunol.021908.132715 PubMedCrossRefGoogle Scholar
  180. 180.
    Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8(1):59–73. doi:10.1038/nri2216 PubMedCrossRefGoogle Scholar
  181. 181.
    Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205(6):1261–1268. doi:10.1084/jem.20080108 PubMedCrossRefGoogle Scholar
  182. 182.
    Fong CH, Bebien M, Didierlaurent A, Nebauer R, Hussell T, Broide D, Karin M, Lawrence T (2008) An antiinflammatory role for IKKbeta through the inhibition of “classical” macrophage activation. J Exp Med 205(6):1269–1276. doi:10.1084/jem.20080124 PubMedCrossRefGoogle Scholar
  183. 183.
    Lepique AP, Daghastanli KR, Cuccovia IM, Villa LL (2009) HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin Cancer Res 15(13):4391–4400. doi:10.1158/1078-0432.CCR-09-0489 PubMedCrossRefGoogle Scholar
  184. 184.
    van Hall T, Wolpert EZ, van Veelen P, Laban S, van der Veer M, Roseboom M, Bres S, Grufman P, de Ru A, Meiring H, de Jong A, Franken K, Teixeira A, Valentijn R, Drijfhout JW, Koning F, Camps M, Ossendorp F, Karre K, Ljunggren HG, Melief CJ, Offringa R (2006) Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat Med 12(4):417–424. doi:10.1038/nm1381 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands

Personalised recommendations