Cancer Microenvironment

, Volume 4, Issue 2, pp 209–217 | Cite as

Cancer-Immune Equilibrium: Questions Unanswered

Review Paper

Abstract

Cancer-immune (CI) equilibrium constitutes an important component of the cancer immunoediting theory. It is defined as a period during which our immune system and cancer live in harmony in the body. The immune system, though not able to completely eliminate the cancer, doesn’t allow it to progress or metastasize further. Mechanisms of this phase are poorly understood because this phase is difficult to identify even by the most modern detection methods. Till now, the work done on the equilibrium phase of cancer, suggests promising improvements in cancer therapy if the disease could be withheld in this phase. However, there are many queries which remain to be addressed about this interesting yet unresolved phase of cancer immunity.

Keywords

Immunoediting Elimination Immune equilibrium Escape Mechanisms 

Notes

Conflict of Interest

The author(s) declare that they have no conflict of interest

Disclosure of Funding

No funding has been received from any agency for this work

Authors’ Contributions

AB conceptualized, designed and drafted the manuscript. YK has drafted the manuscript and has revised it critically for important intellectual content. Both the authors have read and approved the final manuscript.

References

  1. 1.
    Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360PubMedCrossRefGoogle Scholar
  2. 2.
    Teng MWL, Swann JB, Koebel MC, Schreiber RD, Smyth JM (2008) Immune-mediated dormancy: an equilibrium with cancer. J Leukocyte Biol 84:988–993PubMedCrossRefGoogle Scholar
  3. 3.
    Kauffman HM, McBride MA, Delmonico FL (2000) First report of the United Network for Organ Sharing Transplant Tumor Registry: donors with a history of cancer. Transplantation 70:1747–1751PubMedCrossRefGoogle Scholar
  4. 4.
    Myron KH, McBride MA, Cherikh WS, Spain PC, Marks WH, Roza AM (2002) Transplant tumor registry: donor related malignancies. Transplantation 74:358–362CrossRefGoogle Scholar
  5. 5.
    MacKie MR, Reid R, Junor B (2003) Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Eng J Med 348:567–568CrossRefGoogle Scholar
  6. 6.
    Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF et al (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Eng J Med 346:564–569CrossRefGoogle Scholar
  7. 7.
    Dhodapkar MV, Krasovsky J, Osman K, Geller MD (2003) Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 198:1753–1757PubMedCrossRefGoogle Scholar
  8. 8.
    Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907PubMedCrossRefGoogle Scholar
  9. 9.
    Naumov GN, MacDonald IC, Chambers AF, Groom AC (2001) Solitary cancer cells as a possible source of tumour dormancy? Semin Cancer Biol 11:271–276PubMedCrossRefGoogle Scholar
  10. 10.
    Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153PubMedCrossRefGoogle Scholar
  11. 11.
    Ehrlich P (1909) Ueber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd 5(Part 1):273–290Google Scholar
  12. 12.
    Kim R, Emi M, Tanabe K (2008) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14CrossRefGoogle Scholar
  13. 13.
    Bernardone IS (2008) Role of NK cells and adaptive immunity in “immunoediting”: recent developments. Immunologia 27:141–146Google Scholar
  14. 14.
    Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81PubMedCrossRefGoogle Scholar
  15. 15.
    Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Eng J Med 348:203–213CrossRefGoogle Scholar
  17. 17.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  18. 18.
    Mahnke YD, Schwendemann J, Beckhove P, Schirrmacher V (2005) Maintenance of long term tumor-specific T-cell memory by residual dormant tumor cells. Immunology 115:325–336PubMedCrossRefGoogle Scholar
  19. 19.
    Farrar JD, Katz KH, Windsor J, Thrush G, Scheuermann RH, Uhr JW et al (1999) Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN—in establishing and maintaining the tumor-dormant state. J Immunol 162:2842–2849PubMedGoogle Scholar
  20. 20.
    Hermelink MN, Braumuller H, Pichler B, Wieder T, Mailhammer R, Schaak K et al (2008) Tnfr1 signaling and IFN-G signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13:507–518CrossRefGoogle Scholar
  21. 21.
    Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848PubMedCrossRefGoogle Scholar
  22. 22.
    Baguley BC (2006) Tumor stem cell niches: a new functional framework for the action of anticancer drugs. Recent patents on anti-cancer drug discovery 1:121–127PubMedCrossRefGoogle Scholar
  23. 23.
    Ziegler A, Heidenreich R, Braumüller H, Wolburg H, Weidemann S, Mocikat R et al (2009) EpCAM, a human tumor-associated antigen promotes Th2 development and tumor immune evasion. Blood 113:3494–3502PubMedCrossRefGoogle Scholar
  24. 24.
    Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H et al (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88:577–583PubMedCrossRefGoogle Scholar
  25. 25.
    Kondo E, Koda K, Takiguchi N, Oda K, Seike K, Ishizuka M et al (2003) Preoperative natural killer cell activity as a prognostic factor for distant metastasis following surgery for colon cancer. Dig Surg 20:445–451PubMedCrossRefGoogle Scholar
  26. 26.
    Villegas FR, Coca S, Villarrubia VG, Jimenez R, Chillon MJ, Jareno J et al (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35:23–28PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang B, Zhang Y, Bowerman NA, Schietinger A, Fu YX, Kranz DM et al (2008) Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res 68:1563–1571PubMedCrossRefGoogle Scholar
  28. 28.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  29. 29.
    Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660PubMedCrossRefGoogle Scholar
  30. 30.
    Wikman H, Vessella R, Pantel K (2008) Cancer micrometastasis and tumor dormancy. APMIS 116:754–770PubMedCrossRefGoogle Scholar
  31. 31.
    Felsher DW (2006) Tumor dormancy: death and resurrection of cancer as seen through transgenic mouse models. Cell Cycle 5:1808–1811PubMedCrossRefGoogle Scholar
  32. 32.
    Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153PubMedCrossRefGoogle Scholar
  33. 33.
    Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H et al (2005) Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201:779–791PubMedCrossRefGoogle Scholar
  34. 34.
    Hakansson L (2009) The capacity of the immune system to control cancer. Eur J Cancer 45:2068–2070PubMedCrossRefGoogle Scholar
  35. 35.
    Vence LA, Palucka K, Fay JW, Ito T, Liu Y, Banchereau J et al (2007) Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci U S A 104:20884–20889PubMedCrossRefGoogle Scholar
  36. 36.
    Cruz-Merino LDL, Grande-Pulido E, Albero-Tamarit A, Villenaa MEC (2008) Cancer and immune response: old and new evidence for future challenges. The Oncologist 13:000–000Google Scholar
  37. 37.
    Rouas-Freiss N, Moreau P, Ferrone S, Carosella ED (2005) HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism? Cancer Res 65(22):10139–10144PubMedCrossRefGoogle Scholar
  38. 38.
    Frey AB (2006) Myeloid suppressor cells regulate the adaptive immune response to cancer. J Clin Invest 116:2587–2590PubMedCrossRefGoogle Scholar
  39. 39.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Eng J Med 285:1182–1186CrossRefGoogle Scholar
  40. 40.
    Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846PubMedCrossRefGoogle Scholar
  41. 41.
    Beitsch JF, Leitch PD, Hoover M, Euhus S, Haley D, Morrison B et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162PubMedCrossRefGoogle Scholar
  42. 42.
    Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Eng J Med 353:793–802CrossRefGoogle Scholar
  43. 43.
    Vredenburgh JJ, Silva O, Tyer C, DeSombre K, Bou-Ghalia A, Cook M et al (1996) A comparison of immunohistochemistry, two‑color immunofluorescence, and flow cytometry with cell sorting for the detection of micrometastatic breast cancer in the bone marrow. J Hematother 5:57–62PubMedCrossRefGoogle Scholar
  44. 44.
    Naume B, Borgen E, Tossvik S, Pavlak N, Oates D, Nesland JM (2004) Detection of isolated tumor cells in peripheral blood and in BM: evaluation of a new enrichment method. Cytotherapy 6:244–252PubMedCrossRefGoogle Scholar
  45. 45.
    Fodstad O, Hoifodt HK, Rye PD, Trones GE, Beiske K (1996) New immunobead techniques for sensitive detection of malignant cells in blood and bone marrow. Proc Am Assoc Cancer Res 37:214Google Scholar
  46. 46.
    Griwatz C, Brandt B, Assmann G, Zanker KS (1995) An immunological enrichment method for epithelial cells from peripheral blood. J Immunol Methods 183:251–265PubMedCrossRefGoogle Scholar
  47. 47.
    Arbab AS, Liu W, Frank JA (2006) Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 3:427–439PubMedCrossRefGoogle Scholar
  48. 48.
    Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456PubMedCrossRefGoogle Scholar
  49. 49.
    Harper J, Naumov GN, Exarhopoulos A, Bender E, Louis G, Folkman J, et al (2006) Predicting the switch to the angiogenic phenotype in a human tumor model. In: Proceedings of the American Association for Cancer Research 837Google Scholar
  50. 50.
    Klement G, Kikuchi L, Kieran M, Almog N, Yip TT, Folkman J (2004) Early tumor detection using platelet uptake of angiogenesis regulators. Blood 104:239aGoogle Scholar
  51. 51.
    Cervi D, Yip TT, Bhattacharya N, Podust VN, Peterson J, Abou-Slaybi et al (2008) Platelet-associated PF-4 as a biomarker of early tumor growth. Blood 111:1201–1207PubMedCrossRefGoogle Scholar
  52. 52.
    Felsher DW (2006) Tumor dormancy: death and resurrection of cancer as seen through transgenic mouse models. Cell Cycle 5:1808–1811PubMedCrossRefGoogle Scholar
  53. 53.
    Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456PubMedCrossRefGoogle Scholar
  54. 54.
    Demicheli R (2001) Tumor dormancy: findings and hypotheses from clinical research on breast cancer. Semin Cancer Biol 11:297–306PubMedCrossRefGoogle Scholar
  55. 55.
    Barrett AJ, Savani BN (2009) Does chemotherapy modify the immune surveillance of hematological malignancies? Leukemia 23:53–58PubMedCrossRefGoogle Scholar
  56. 56.
    Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117:1195–1203PubMedCrossRefGoogle Scholar
  57. 57.
    Korman AJ, Peggs KS, Allison JP (2006) Checkpoint blockade in cancer immunotherapy. Adv Immunol 90:297–339PubMedCrossRefGoogle Scholar
  58. 58.
    Favaro E, Amadori A, Indraccolo S (2008) Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy. APMIS 116:648–659PubMedCrossRefGoogle Scholar
  59. 59.
    Clemente CG, Mihm JMC, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310PubMedCrossRefGoogle Scholar
  60. 60.
    Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8 (+) T cell infiltrations within esophageal carcinomas. Cancer Res 61:3932–3936PubMedGoogle Scholar
  61. 61.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Eng J Med 348:203–213CrossRefGoogle Scholar
  62. 62.
    Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417PubMedCrossRefGoogle Scholar
  63. 63.
    Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S (2005) Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep 14(2):425–431PubMedGoogle Scholar
  64. 64.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRefGoogle Scholar
  65. 65.
    Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G et al (2006) High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108:2957–2964PubMedCrossRefGoogle Scholar
  66. 66.
    Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S (2008) Correlation of high numbers of intratumoral FOXP3 + regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica 93:193–200PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.PGIMERChandigarhIndia

Personalised recommendations