MUSCULOSKELETAL SURGERY

, Volume 97, Issue 2, pp 93–100 | Cite as

Acrylic bone cement: current concept review

  • B. Magnan
  • M. Bondi
  • T. Maluta
  • E. Samaila
  • L. Schirru
  • C. Dall’Oca
Review

Abstract

Acrylic bone cement has had for years an important role in orthopedic surgery. Polymethylmethacrylate (PMMA) has been extended from the ophthalmological and dental fields to orthopedics, as acrylic cement used for fixation of prosthetic implants, for remodeling osteoporotic, neoplastic and vertebral fractures repair. The PMMA bone cement is a good carrier for sustained antibiotic release in the site of infection. Joint prostheses chronic infection requires surgical removal of the implant, in order to eradicate the infection process. This can be performed in the same surgical time (one-stage procedure) or in two separate steps (two-stage procedure, which involves the use of an antibiotic-loaded cement spacer). The mechanical and functional characteristics of the spacers allow a good joint range of motion, weight-bearing in selected cases and a sustained release of antibiotic at the site of infection. The improvement of fixation devices in recent years was not accompanied by the improvement of elderly bone quality. Some studies have tested the use of PMMA bone cement or calcium phosphate as augmentation support of internal fixation of these fractures. Over the past 20 years, experimental study of acrylic biomaterials (bone cement, bioglass ceramic, cement additives, absorbable cement, antibiotic spacers) has been of particular importance, offering numerous models and projects.

Keywords

Acrylic bone cement Infection Antibiotic spacer Augmentation Polymethylmethacrylate 

Notes

Conflict of interest

None.

References

  1. 1.
    Röhm O (1901) On the Polymerization Products of Acrylic Acid. Dissertation, Tübingen, Germany, University of TübingenGoogle Scholar
  2. 2.
    Kuehn KD, Ege W, Gopp U (2005) Acrylic bone cements: composition and properties. Orthop Clin North Am 36:17–28PubMedCrossRefGoogle Scholar
  3. 3.
    Judet J, Judet R (1950) The use of an artificial femoral head for arthroplasty of the hip joint. J Bone Joint Surg Br 32-B(2):166–173PubMedGoogle Scholar
  4. 4.
    Kiaer S (1951) Experimental investigation of the tissue reaction to acrylic plastiques. 5th international congress of orthopaedic surgery, StockolmGoogle Scholar
  5. 5.
    Haboush EJ (1953) A new operation for arthroplasty of the hip based on biomechanics, photoelasticity, fast-setting dental acrylic, and other considerations. Bull Hosp Joint Dis 14:242–277PubMedGoogle Scholar
  6. 6.
    Segura J, Albareda J, Bueno AL, Nuez A, Palanca D, Seral F (1997) The treatment of giant cell tumors by curettage and filling with acrylic cement. Long-term functional results. Chir Organi Mov 82(4):373–380PubMedGoogle Scholar
  7. 7.
    Baldini N, Toni A, Sudanese A, Greggi T, Boriani S (1987) Use of acrylic cement after curettage in the treatment of giant cell tumors. Chir Organi Mov 72(1):1–6PubMedGoogle Scholar
  8. 8.
    Charnley J (1964) The bonding of prostheses to bone by cement. J Bone Joint Surg Br 46:518–529PubMedGoogle Scholar
  9. 9.
    Lewis G (2008) Alternative acrylic bone cement formulations for cemented arthroplasties: present status, key issues, and future prospects. J Biomed Mater Res B Appl Biomater 84:301–319PubMedGoogle Scholar
  10. 10.
    Webb JC, Spencer RF (2007) The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br 89:851–857PubMedCrossRefGoogle Scholar
  11. 11.
    Goodman S (2005) Wear particulate and osteolysis. Orthop Clin North Am 36:41–48, viGoogle Scholar
  12. 12.
    Crowninshield R (2001) Femoral hip implant fixation within bone cement. Op Tech Orthop 11:296–299CrossRefGoogle Scholar
  13. 13.
    Swedish Hip Arthroplasty. Register http://www.shpr.se/en/default.aspx
  14. 14.
    The Norwegian Arthroplasty. Register http://nrlweb.ihelse.net/eng/default.htm
  15. 15.
    Verdonschot N, Huiskes R (1998) Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage. Biomaterials 19:1773–1779PubMedCrossRefGoogle Scholar
  16. 16.
    Weightman B, Freeman MA, Revell PA et al (1982) The mechanical properties of cement and loosening of the femoral component of hip replacements. J Bone Joint Surg Br 69-B:558–564Google Scholar
  17. 17.
    Shah N, Porter M (2005) Evolution of cemented stems. Orthopedics 28(8 Suppl):s819–s825PubMedGoogle Scholar
  18. 18.
    Fottner A, Utzschneider S, Mazoochian F et al (2010) Cementing techniques in hip arthroplasty: an overview. [Article in German]. Z Orthop Unfall 148(2):168–173PubMedCrossRefGoogle Scholar
  19. 19.
    Geiger MH, Keating EM, Ritter MA et al (2001) The clinical significance of vacuum mixing bone cement. Clin Orthop Relat Res 382:258–266PubMedCrossRefGoogle Scholar
  20. 20.
    Hirose S, Otsuka H et al (2012) Outcomes of Charnely total hip arthroplasty using improved cementing with so-called second and third-generation techniques. Orthopaedic Surgery, Aichi Medical University. J Orthop Sci 17:118–123PubMedCrossRefGoogle Scholar
  21. 21.
    Mulroy W, Estok D, Harris W (1995) Total hip arthroplasty with use of so-called second-generation cementing techniques. J Bone Joint Surg Am 77:1845–1852PubMedGoogle Scholar
  22. 22.
    Galibert P, Deramond H, Rosat P, Le Gars D (1981) Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 33:166–168 (in French)Google Scholar
  23. 23.
    Piazzolla A, De Giorgi G, Solarino G (2011) Vertebral body recollapse without trauma after kyphoplasty with calcium phosphate cement. Musculoskelet Surg 95(2):141–145. doi:10.1007/s12306-011-0130-y Epub 2011 Apr 6PubMedCrossRefGoogle Scholar
  24. 24.
    Truumees E, Hilibrand A, Vaccaro AR (2004) Percutaneous vertebral augmentation. Spine J 4:218–229PubMedCrossRefGoogle Scholar
  25. 25.
    Gheduzzi S, Webb JJ, Miles AW (2006) Mechanical characterisation of three percutaneous vertebroplasty biomaterials. J Mater Sci Mater Med 17(421–26):27Google Scholar
  26. 26.
    Nussbaum DA, Gailloud P, Murphy K (2004) The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol 15:121–126PubMedCrossRefGoogle Scholar
  27. 27.
    Mathis JM, Wong W (2003) Percutaneous vertebroplasty: technical considerations. J Vasc Interv Radiol 14:953–960PubMedCrossRefGoogle Scholar
  28. 28.
    Taylor RS, Taylor RJ, Fritzell P (2006) Balloon kyphoplasty and vertebroplasty for vertebral compression fractures: a comparative systematic review of efficacy and safety. Spine (Phila Pa 1976) 31(23):2747–2755CrossRefGoogle Scholar
  29. 29.
    De Bastiani G, Gabbi C, Magnan B et al (1990) Studio sperimentale dell’interfaccia cemento-osso: effetto del calore di polimerizzazione. Biomateriali 4(3/4):85–93Google Scholar
  30. 30.
    Ciapetti G, Stea S, Granchi D, Cavedagna D, Gamberini S, Pizzoferrato A (1995) The effects of orthopaedic cements on osteoblastic cells cultured in vitro. Chir Organi Mov 80(4):409–415PubMedGoogle Scholar
  31. 31.
    Joseph TN, Chen AL, Di Cesare PE (2003) Use of antibiotic-impregnated cement in total joint arthroplasty. J Am Acad Orthop Surg 11(1):38–47PubMedGoogle Scholar
  32. 32.
    Andollina A, Bertoni G, Zolezzi C, Trentani F, Trentani P, Maria Borrelli A, Tigani D (2008) Vancomycin and meropenem in acrylic cement: elution kinetics of in vitro bactericidal action. Chir Organi Mov 91(3):153–158. doi:10.1007/s12306-007-0025-0 PubMedCrossRefGoogle Scholar
  33. 33.
    Gualdrini G, Bassi A, Fravisini M, Giunti A (2005) Bone with cement and antibiotic: antibiotic release in vitro. Chir Organi Mov 90(1):23–29PubMedGoogle Scholar
  34. 34.
    Chohfi M, Langlais F, Fourastier J et al (1998) Pharmacokinetics, uses, and limitations of vancomycin-loaded bone cement. Int Orthop 22(3):171–177PubMedCrossRefGoogle Scholar
  35. 35.
    Klemm K (2001) The use of antibiotic-containing bead chains in the treatment of chronic bone infections. Clin Microbiol Infect 7(1):28–31PubMedCrossRefGoogle Scholar
  36. 36.
    Masri BA, Duncan CP, Beauchamp CP (1998) Long-term elution of antibiotics from bone-cement: an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system. J Arthroplasty 13(3):331–338PubMedCrossRefGoogle Scholar
  37. 37.
    Allende C, Mangupli M, Bagliardelli J, Diaz P, Allende BT (2009) Infected nonunions of long bones of the upper extremity: staged reconstruction using polymethylmethacrylate and bone graft impregnated with antibiotics. Chir Organi Mov 93(3):137–142. doi:10.1007/s12306-009-0046-y Epub 2009 Oct 30PubMedGoogle Scholar
  38. 38.
    Fontanesi G, Giancecchi F, Ruini D, Rotini R (1982) Use of acrylic cement with an antibiotic in prosthetic surgery of the hip. Chir Organi Mov 68(3):287–295PubMedGoogle Scholar
  39. 39.
    Bertazzoni Minelli E, Benini A, Magnan B et al (2004) Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty. J Antimicrob Chemother 53(2):329–334PubMedCrossRefGoogle Scholar
  40. 40.
    D’Angelo F, Negri L, Binda T, Zatti G, Cherubino P (2011) The use of a preformed spacer in two-stage revision of infected hip arthroplasties. Musculoskelet Surg 95(2):115–120. doi:10.1007/s12306-011-0128-5 Epub 2011 Apr 9PubMedCrossRefGoogle Scholar
  41. 41.
    Tsukayama DT, Estrada R, Gustilo RB (1996) Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J Bone Joint Surg Am 78(4):512–523PubMedGoogle Scholar
  42. 42.
    Callaghan JJ, Katz RP, Johnston RC (1999) One-stage revision surgery of the infected hip. A minimum 10-year followup study. Clin Orthop Relat Res 369:139–143PubMedCrossRefGoogle Scholar
  43. 43.
    Ivarsson I, Wahlström O et al (1994) Revision of infected hip replacement. Two-stage procedure with a temporary gentamicin spacer. Acta Orthop Scand 65(1):7–8PubMedCrossRefGoogle Scholar
  44. 44.
    Mutimer J, Gillespie G et al (2009) Measurements of in vivo intra-articular gentamicin levels from antibiotic loaded articulating spacers in revision total knee replacement. Knee 16(1):39–41 Epub 2008 Sep 10PubMedCrossRefGoogle Scholar
  45. 45.
    Villa T, Carnelli D (2007) Experimental evaluation of the biomechanical performances of a PMMA-based knee spacer. Knee 14(2):145–153PubMedCrossRefGoogle Scholar
  46. 46.
    Romanò CL, Romanò D, Albisetti A et al (2012) Preformed antibiotic-loaded cement spacers for two-stage revision of infected total hip arthroplasty. Long-term results. Hip Int 6:0. doi:10.5301/HIP.2012.9570
  47. 47.
    Degen RM, Davey JR, Davey JR, et al (2012) Does a prefabricated gentamicin-impregnated, load-bearing spacer control periprosthetic hip infection? Clin Orthop Relat Res 470(10):2724–2729Google Scholar
  48. 48.
    Pitto RP, Castelli CC et al (2005) Pre-formed articulating knee spacer in two-stage revision for the infected TKA. Int Orthop 29(5):305–308PubMedCrossRefGoogle Scholar
  49. 49.
    Wan Z, Karim A et al (2012) Preformed articulating knee spacers in 2-stage total knee revision arthroplasty. Minimum 2-year follow-up. J Arthroplast 27(8):1469–1473Google Scholar
  50. 50.
    Magnan B, Bondi M, Vecchini E, Samaila E, Maluta T, Dall’Oca C (2013) A preformed antibiotic loader spacer for treatment for septic arthritis of the shoulder. Muscoloskeletal Surg 14(5) [Epub ahead of print]Google Scholar
  51. 51.
    Harrington KD (1975) The use of methylmethacrylate as an adjunct in the internal fixation of unstable comminuted intertrochanteric fractures in osteoporotic patients. J Bone Joint Surg Am 57(6):744–750 Google Scholar
  52. 52.
    Kammerlander C, Gebhard F, Meier C, et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: A new technique and preliminary clinical results. A prospective multicentre trial. Injury 42(11):1584–1490.83Google Scholar
  53. 53.
    Dall’Oca C, Maluta T et al (2010) Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing. Injury 41(11):1150–1155PubMedCrossRefGoogle Scholar
  54. 54.
    Heini PF, Franz T, Fankhauser C et al (2004) Femoroplasty-augmentation of mechanical properties in the osteoporotic proximal femur: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clin Biomech (Bristol, Avon) 19:506–512CrossRefGoogle Scholar
  55. 55.
    Linder P, Gisep A, Boner V et al (2006) Biomechanical evaluation of a new Augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 24:2230–2237CrossRefGoogle Scholar
  56. 56.
    Dall’Oca C, Maluta T, Lavini F, Micheloni GM, Bondi M, Magnan B (2012) Augmentation nelle fratture per trocanteriche instabili nel grande anziano osteoporotico: Tecnica operatoria per sistemi a 1 o 2 viti cervico-cefaliche. Acta Biomed; 83;Quaderno 1:39–45Google Scholar
  57. 57.
    Nussbaum DA, Gailloud P, Murphy K (2004) A review of complications associated with vertebroplasty and kyphoplasty as reported to the Food and Drug Administration medical device related web site. J Vasc Interv Radiol 15:1185–1192PubMedCrossRefGoogle Scholar
  58. 58.
    Vasconcelos C, Gailloud P, Martin JB, Murphy KJ (2001) Transient arterial hypotension induced by polymethylmethacrylate injection during percutaneous vertebroplasty. J Vasc Interv Radiol 12:1001–1002PubMedCrossRefGoogle Scholar
  59. 59.
    Krebs J, Ferguson SJ, Hoerstrup SP, Goss BG, Haeberli A, Aebli N (2008) Influence of bone marrow fat embolism on coagulation activation in an ovine model of vertebroplasty. J Bone Joint Surg Am 90:349–356PubMedCrossRefGoogle Scholar
  60. 60.
    Krebs J, Aebli N, Goss BG et al (2007) Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement. J Biomed Mater ResB Appl Biomater 82:526–532CrossRefGoogle Scholar
  61. 61.
    Leitman D, Yu V, Cox C (2011) Investigation of polymethylmethacrylate pulmonary embolus in a patient 10 years following vertebroplasty. Radiol Case 5(10):14–21. doi:10.3941/jrcr.v5i10.815 Google Scholar
  62. 62.
    Syed MI, Jan S, Patel NA, Shaikh A, Marsh RA, Stewart RV (2006) Fatal fat embolism after vertebroplasty: identification of the high-risk patient. AJNR Am J Neuroradiol 27:343–345PubMedGoogle Scholar
  63. 63.
    Hyun-Tae K, Yoon-Nyun K, Hong-Won S, In-Cheol K, Hyungseop K, Nam-Hee P, Sae-Young C (2013) Intracardiac foreign body caused by cement leakage as a late complication of percutaneous vertebroplasty. Korean J Intern Med 28:247–250Google Scholar
  64. 64.
    Benneker LM, Heini PF, Suhm N, Gisep A (2008) The effect of pulsed jet lavage in vertebroplasty on injection forces of polymethylmethacrylate bone cement, material distribution, and potential fat embolism: a cadaver study. Spine 33:E906–E910PubMedCrossRefGoogle Scholar
  65. 65.
    Benneker LM, Krebs J, Boner V, Boger A, Hoerstrup S, Heini PF, Gisep A (2010) Cardiovascular changes after PMMA vertebroplasty in sheep: the effect of bone marrow removal using pulsed jet-lavage. Eur Spine J 19:1913–1920. doi:10.1007/s00586-010-1555-y PubMedCrossRefGoogle Scholar
  66. 66.
    Magnan B, Gabbi C, Regis D, et al (1993) La sintesi endomidollare di fratture con polimetilmetacrilato di metile: studio sperimentale del processo riparativo. Biomateriali ½ 21–28Google Scholar
  67. 67.
    Magnan B, Gabbi C, Pagliara T et al (1996) Un nuovo cemento acrilico composito addizionato con fibre di biovetro: studio sperimentale degli effetti biologici in colture cellulari. Biomateriali 1(2):35–42Google Scholar
  68. 68.
    Larsen MJ, Thorsen A (1984) A comparison of some effects of fluoride on apatite formation in vitro and in vivo. Calcif Tissue Int 36(6):690–696PubMedCrossRefGoogle Scholar
  69. 69.
    Rich C, Ensinck J (1961) Effect of sodium fluoride on calcium metabolism of human beings. Nature 191:184PubMedCrossRefGoogle Scholar
  70. 70.
    Baud CA, Very JM, Courvoisier B (1988) Biophysical study of bone mineral in biopsies of osteoporotic patients before and after long-term treatment with fluoride. Bone 9(16):361–365PubMedCrossRefGoogle Scholar
  71. 71.
    Digas G, Kärrholm J, Thanner J (2006) Different loss of BMD using uncemented press-fit and whole polyethylene cups fixed with cement: repeated DXA studies in 96 hips randomized to 3 types of fixation. Acta Orthop 77(2):218–226PubMedCrossRefGoogle Scholar
  72. 72.
    Magnan B, Gabbi C, Regis D (1994) Sodium fluoride sustained-release bone cement: an experimental study in vitro and in vivo. Acta Orthop Belg 60(1):72–80PubMedGoogle Scholar
  73. 73.
    Lewis G (1997) Properties of acrylic bone cement: state of the art review. J Biomed Mater Res 38:155PubMedCrossRefGoogle Scholar
  74. 74.
    Hockin HK, Elena FB, Lisa EC (2007) Strong, macroporous and in situ-setting calcium phosphate cement-layered structures. Biomaterials 28:3786–3796CrossRefGoogle Scholar
  75. 75.
    Debrunner HU (1976) Untersuchungen zur Porositaet von Knochenzementen. Arch Orthop Unfall Chir 86:261–268CrossRefGoogle Scholar

Copyright information

© Istituto Ortopedico Rizzoli 2013

Authors and Affiliations

  • B. Magnan
    • 1
  • M. Bondi
    • 2
  • T. Maluta
    • 1
  • E. Samaila
    • 1
  • L. Schirru
    • 1
  • C. Dall’Oca
    • 1
  1. 1.Orthopaedic Department, Surgical Center “P. Confortini”University of VeronaVeronaItaly
  2. 2.Department of Orthopaedics and TraumatologyCarlo Poma HospitalMantuaItaly

Personalised recommendations