La Chirurgia degli Organi di Movimento

, Volume 92, Issue 2, pp 97–103

Isolation, characterisation and osteogenic potential of human bone marrow stromal cells derived from the medullary cavity of the femur

  • Elisa Leonardi
  • Valentina Devescovi
  • Francesca Perut
  • Gabriela Ciapetti
  • Armando Giunti
Original Article


Marrow stromal cells (MSC) are increasingly being introduced in orthopaedic practice as potentially powerful effectors of bone regeneration. Since cell recovery of MSC is affected by a high degree of individual variability, sources for collecting adequate amounts of safe and effective MSC under routine conditions are needed. We analysed if femoral bone marrow, which is usually discarded during total hip arthroplasty procedures, is a reliable source of MSC to enhance bone healing and regeneration. Mononuclear cells were isolated, assayed for typical MSC markers, harvested under appropriate culture conditions and evaluated for their ability to differentiate into osteoblasts. Cell recovery and osteogenic potential were independent from donor gender or age, suggesting that elderly individuals are eligible for autologous cell therapy. Although heterogeneous, the pool of MSC recoveredfrom femoral marrow without further in vitro selection or manipulation proved highly effective in proliferating and differentiating along the osteogenic lineage. In conclusion, this source of MSC offers a valuable tool to be used to promote osteogenesis and implant fixation.


Marrow stromal cells Bone marrow Osteogenic differentiation Bone engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Muschler GF, Midura RJ (2002) Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res 395:66–80PubMedCrossRefGoogle Scholar
  2. 2.
    Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937PubMedCrossRefGoogle Scholar
  3. 3.
    Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584PubMedCrossRefGoogle Scholar
  4. 4.
    Brooke G, Cook M, Blair C et al (2007) Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 18:846–858PubMedCrossRefGoogle Scholar
  5. 5.
    Granero-Molto F, Weis JA, Longobardi L, Spagnoli A (2008) Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin Biol Ther 8:255–268PubMedCrossRefGoogle Scholar
  6. 6.
    Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age-and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19:117–125PubMedCrossRefGoogle Scholar
  7. 7.
    Murphy JM, Dixon K, Beck S et al (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46:704–713PubMedCrossRefGoogle Scholar
  8. 8.
    Fehrer C, Lepperdinger G (2005) Mesenchymal stem cell aging. Exp Gerontol 40:926–930PubMedCrossRefGoogle Scholar
  9. 9.
    Patterson TE, Kumagai K, Griffith L, Muschler GF (2008) Cellular strategies for enhancement of fracture repair. J Bone Joint Surg Am 90[Suppl 1]:111–119PubMedCrossRefGoogle Scholar
  10. 10.
    Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedCrossRefGoogle Scholar
  11. 11.
    Roufosse CA, Direkze NC, Otto WR, Wright NA (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597PubMedCrossRefGoogle Scholar
  12. 12.
    Eghbali-Fatourechi GZ, Lamsam J, Fraser D et al (2005) Circulating osteoblast-lineage cells in humans. N Engl J Med 352:1959–1966PubMedCrossRefGoogle Scholar
  13. 13.
    Kuznetsov SA, Mankani MH, Gronthos S et al (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–1139PubMedCrossRefGoogle Scholar
  14. 14.
    Declercq H, Van der Vreken N, De Maeyer E et al (2004) Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and sources. Biomaterials 25:757–768PubMedCrossRefGoogle Scholar
  15. 15.
    Granchi D, Amato I, Battistelli L et al (2004) In vitro blockade of receptor activator of nuclear factor kappa B ligand prevents osteoclastogenesis induced by neuroblastoma cells. Int J Cancer 111:829–838PubMedCrossRefGoogle Scholar
  16. 16.
    Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  17. 17.
    Jiang Y, Mishima H, Sakai S et al (2008) Gene expression analysis of major lineage-defining factors in human bone marrow cells: effect of aging, gender, and age-related disorders. J Orthop Res 6:910–917CrossRefGoogle Scholar
  18. 18.
    Suva D, Garavaglia G, Menetrey J et al (2004) Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. J Cell Physiol 198:110–118PubMedCrossRefGoogle Scholar
  19. 19.
    Scharstuhl A, Schewe B, Benz K et al (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25:3244–3251PubMedCrossRefGoogle Scholar
  20. 20.
    Mageed AS, Pietryga DW, DeHeer DH, West RA (2007) Isolation of large numbers of mesenchymal stem cells from the washings of bone marrow collection bags: characterization of fresh mesenchymal stem cells. Transplantation 83:1019–1026PubMedCrossRefGoogle Scholar
  21. 21.
    Jones EA, Crawford A, English A et al (2008) Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum 58:1731–1740PubMedCrossRefGoogle Scholar
  22. 22.
    Ciapetti G, Ambrosio L, Marletta G et al (2006) Human bone marrow stromal cells: In vitro expansion and differentiation for bone engineering. Biomaterials 27:6150–6160PubMedCrossRefGoogle Scholar
  23. 23.
    Jones E, McGonagle D (2008) Human bone marrow mesenchymal stem cells in vivo. Rheumatology 47:126–131PubMedCrossRefGoogle Scholar
  24. 24.
    Mendes SC, Tibbe JM, Veenhof M et al (2004) Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. J Mater Sci Mater Med 15:1123–1128PubMedCrossRefGoogle Scholar
  25. 25.
    Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347PubMedCrossRefGoogle Scholar
  26. 26.
    Garvin K, Feschuk C, Sharp JG, Berger A (2007) Does the number or quality of pluripotent bone marrow stem cells decrease with age? Clin Orthop Relat Res 465:202–207PubMedGoogle Scholar
  27. 27.
    Zhou S, Greenberger JS, Epperly MW et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7:335–343PubMedCrossRefGoogle Scholar
  28. 28.
    Justesen J, Stenderup K, Eriksen EF, Kassem M (2002) Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 71:36–44PubMedCrossRefGoogle Scholar
  29. 29.
    Leskelä HV, Risteli J, Niskanen S et al (2003) Osteoblast recruitment from stem cells does not decrease by age at late adulthood. Biochem Biophys Res Commun 311:1008–1013PubMedCrossRefGoogle Scholar
  30. 30.
    Wlodarski KH, Wlodarski PK, Galus R (2007) Senescence of osteogenic cells. Review. Orthop Traumatol Rehabil 9:63–67Google Scholar
  31. 31.
    Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359PubMedCrossRefGoogle Scholar
  32. 32.
    Sandrini E, Giordano C, Busini V et al (2007) Apatite formation and cellular response of a novel bioactive titanium. J Mater Sci Mater Med 18:1225–1237PubMedCrossRefGoogle Scholar
  33. 33.
    Wagner W, Ho AD (2007) Mesenchymal stem cell preparations-comparing apples and oranges. Stem Cell Rev 3:239–248PubMedCrossRefGoogle Scholar
  34. 34.
    Mareddy S, Crawford R, Brooke G, Xiao Y (2007) Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Eng 13:819–829PubMedCrossRefGoogle Scholar
  35. 35.
    Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6:2884–2889PubMedGoogle Scholar
  36. 36.
    Wagner W, Horn P, Castoldi M et al (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 3:e2213PubMedCrossRefGoogle Scholar
  37. 37.
    Schallmoser K, Rohde E, Reinisch A et al (2008) Rapid largescale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum. Tissue Eng Part C Methods (in press)Google Scholar
  38. 38.
    Muschler GF, Matsukura Y, Nitto H et al (2005) Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 432:242–251PubMedCrossRefGoogle Scholar
  39. 39.
    Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87:1430–1437PubMedCrossRefGoogle Scholar
  40. 40.
    Haack-Sorensen M, Bindslev L, Mortensen S et al (2007) The influence of freezing and storage on the characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotherapy 9:328–337PubMedCrossRefGoogle Scholar
  41. 41.
    Liu G, Shu C, Cui L et al (2008) Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells. Cryobiology 56:209–215PubMedCrossRefGoogle Scholar
  42. 42.
    Casado-Diaz A, Santiago-Mora R, Jimenez R et al (2008) Cryopreserved human bone marrow mononuclear cells as a source of mesenchymal stromal cells: application in osteoporosis research. Cytotherapy 26:1–9Google Scholar
  43. 43.
    Kotobuki N, Hirose M, Machida H et al (2005) Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng 11:663–673PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Elisa Leonardi
    • 1
  • Valentina Devescovi
    • 1
  • Francesca Perut
    • 1
  • Gabriela Ciapetti
    • 1
  • Armando Giunti
    • 1
  1. 1.Laboratorio di Fisiopatologia degli Impianti OrtopediciIstituto Ortopedico RizzoliBolognaItaly

Personalised recommendations