Advertisement

Biosemiotics

, Volume 12, Issue 1, pp 39–55 | Cite as

The Mechanism for Mimicry: Instant Biosemiotic Selection or Gradual Darwinian Fine-Tuning Selection?

  • V. N. AlexanderEmail author
Article
  • 69 Downloads

Abstract

Biological mimicry is regarded by many as a textbook illustration of Darwin’s idea of evolution by random mutation followed by differential selection of reproductively fit specimens, resulting in gradual phenotypic change in a population. In this paper, I argue that some cases of so-called mimicry are probably merely look-a-likes and do not gain an advantage due to their similarity in appearance to something else. In cases where a similar appearance does provide a benefit, I argue that it is possible that these forms of mimicry were created in a single generation. An interpretive response to an appearance as a sign can make a new structure perform drastically differently in an environment. In such cases, Darwin’s natural selection mechanism only helps to explain gradual the spread of these new forms, not the creation of them. I argue that biosemiosis should be regarded as a much more powerful mechanism for affecting evolutionary trajectories than the gradualist view allows. I focus on two cases of butterfly mimicry: the Viceroy (Nymphalidae: Limenitis archippus) and Monarch (Nymphalidae: Danaus plexippus) butterflies, supposed Müllerian mimics, and deadleaf mimic butterflies (Kallima).

Keywords

Saltationism Turing patterns Mimicry Pattern formation Genus Kallima Mimicry skepticism H. F. Nijhout 

Notes

References

  1. Alexander, V. (2001). Neutral evolution and aesthetics: Vladimir Nabokov and insect mimicry. Working Papers Series 01-10-057. Santa Fe: Santa Fe Institute.Google Scholar
  2. Alexander, V. (2003). Nabokov, teleology, and insect mimicry. Nabokov Studies, 7(1), 177–213.CrossRefGoogle Scholar
  3. Alexander, V. (2016). Chance, nature’s practical jokes, and the “non-utilitarian delights” of butterfly mimicry. In S. Blackwell & K. Johnson (Eds.), Fine lines: Vladimir Nabokov’s scientific art (pp. 225–234). New Haven: Yale University Press.Google Scholar
  4. Bard, J. (1977). A unity underlying the different zebra striping patterns. Journal of Zoology, 183(4), 527–539.Google Scholar
  5. Bard, J. (1981). A model for generating aspects of zebra and other mammalian coat patterns. Journal of Theoretical Biology, 93(2), 363–385.CrossRefGoogle Scholar
  6. Boyd, B. (2000). Nabokov’s butterflies: Unpublished and uncollected writings. New York: Beacon Press.Google Scholar
  7. Brower, J. V. Z. (1958). Experimental studies of mimicry in some north American butterflies. I. The monarch, Danaus plexippus and viceroy, Limenitis archippus. Evolution, 12(1), 32–47.CrossRefGoogle Scholar
  8. Chamberlain, N., Hill, R., Kapan, D., Gilbert, L., & Kronforst, M. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science, 326(5954), 847–850.CrossRefGoogle Scholar
  9. Dean, B. (1902). A case of mimicry outmimicked? Concerning Kallima butterflies in museums. Science, 16(412), 832–883.CrossRefGoogle Scholar
  10. Eimer, T. (1897). Orthogenesis der Schmetterlinge [Orthogenesis of Butterflies: A Proof of Specifically Directed Development and Impotence of Natural Selection in Species Formation; At the same time a reply to August Weismann]. Leipzig: Englemann.Google Scholar
  11. Ffrench-Constant, R., & Koch, P. (2003). Mimicry and melanism in swallowtail butterflies: Towards a molecular understanding. In C. Boggs, W. Watt, & P. Ehrlich (Eds.), Ecology and Evolution Taking Flight: Butterflies as Model Systems (pp. 259–279). Chicago: University of Chicago Press.Google Scholar
  12. Fisher, R. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.Google Scholar
  13. Fisher, R. (1930). The Genetical theory of natural selection. New York: Clarendon Press.CrossRefGoogle Scholar
  14. Gasmi, L., Boulain, H., Gauthier, J., Hua-Van, A., Musset, K., Jakubowska, A. K., Aury, J.-M., Volkoff, A.-N., Huguet, E., Herrero, S., & Drezen, J.-M. (2015). Recurrent domestication by lepidoptera of genes from their parasites mediated by bracoviruses. PLoS Genetics, 11(9), e1005470.CrossRefGoogle Scholar
  15. Goldschmidt, R. (1940). The material basis of evolution. New Haven: Yale University Press.Google Scholar
  16. Gould, S., & Lewontin, R. (1979). The spandrels of san Marco and the panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society B: Biological Sciences, 205(1161), 581–598.CrossRefGoogle Scholar
  17. Igarashi, S., & Fukuda, H. (2000). The Life Histories of Asian Butterflies 2. Tokyo: Tokai University Press.Google Scholar
  18. Ioannidis, J. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e 0020124.CrossRefGoogle Scholar
  19. Jordaan, F. (2009). Photo under creative commons. Available at https://www.flickr.com/photos/fjordaan/4209283247/in/set-72157622989071863/. Accessed 18 February 2019
  20. Kayser, H. (1985). Pigments. In G. A. Kerkut & L. I. Gilbert (Eds.), Comprehensive insect physiology, biochemistry, and pharmacology (Vol. 10, pp. 367–415). New York: Pergamon Press.Google Scholar
  21. Kleisner, K. (2010). Re-semblance and re-evolution: Paramorphism and semiotic co-option may explain the re-evolution of similar phenotypes. Sign Systems Studies, 38(1/4), 378–392.CrossRefGoogle Scholar
  22. Kull, K. (2014). Adaptive evolution without natural selection. Biological Journal of the Linnean Society, 112(2), 287–294.CrossRefGoogle Scholar
  23. Kull, K. (2016). The biosemiotic concept of the species. Biosemiotics, 9(1), 61–71.CrossRefGoogle Scholar
  24. Maran, T. (2015). Scaffolding and mimicry: A semiotic view of the evolutionary dynamics of mimicry systems. Biosemiotics, 8(2), 211–222.CrossRefGoogle Scholar
  25. Maran, T. (2017). Mimicry and meaning: Structure and semiotics of biological mimicry. Dordrecht: Springer.CrossRefGoogle Scholar
  26. Meinhardt, H. (1982). Models of biological pattern formation. London: Academic Press.Google Scholar
  27. Meinhardt, M., & Gierer, A. (1974). Application of a theory of biological pattern formation based on lateral inhibition. Journal of Cell Science, 15(2), 321–346.Google Scholar
  28. Meinhardt, H., & Gierer, A. (2000). Pattern formation by local self-activation and lateral inhibition. BioEssays, 22(8), 753–760.CrossRefGoogle Scholar
  29. Mullen, S. (2006). Wing pattern evolution and the origins of mimicry among north American admiral butterflies (Nymphalidae: Limenitis). Molecular Phylogenetics and Evolution, 39(3), 747–758.CrossRefGoogle Scholar
  30. Murray, J. (1989). Mathematical biology. New York: Springer-Verlag.CrossRefGoogle Scholar
  31. Nijhout, H. F. (1990). A comprehensive model for colour pattern formation in butterflies. Proceedings of the Royal Society of Biology, 239(1294), 81–113.CrossRefGoogle Scholar
  32. Nijhout, H. F. (1991). Development and Evolution of Butterfly Wing Patterns. Washington D.C.: Smithsonian.Google Scholar
  33. Nijhout, H. F. (2001). Elements of butterfly wing patterns. Journal of Experimental Zoology, 291(3), 213–225.CrossRefGoogle Scholar
  34. Nijhout, H. F., Maini, P. K., Madzvamuse, A., Wathen, A. J., & Sekimura, T. (2003). Pigmentation pattern formation in butterflies: Experiments and models. C. R. Biologies, 326(8), 717–727.CrossRefGoogle Scholar
  35. Oster, G. (1988). Lateral inhibition models of developmental processes. Mathematical Biosciences, 90(1–2), 265–286.CrossRefGoogle Scholar
  36. Pfennig, D., Harcombe, W., & Pfennig, K. (2001). Frequency dependent Batesian mimicry. Nature, 410(6826), 323.CrossRefGoogle Scholar
  37. Platt, A., Coppinger, R., & Brower, L. (1971). Demonstration of the selective advantage of mimetic Limenitis butterflies presented to caged avian predators. Evolution, 1(25), 692–701.CrossRefGoogle Scholar
  38. Poulton, E. (1913). Mimicry, mutation and Mendelism. Bedrock: A Quarterly Review of Scientific Thought, 2(3), 42–56.Google Scholar
  39. Raspopovic, J., Marcon, L., Russo, L., & Sharpe, J. (2014). Digit patterning is controlled by a bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science, 345(6196), 566–570.CrossRefGoogle Scholar
  40. Ritland, D. (1991). Revising a classic butterfly mimicry scenario: Demonstration of Mullerian mimicry between Florida Viceroys (Limenitis archippus floridensis) and queens (Danaus gilippus berenice). Evolution, 45(4), 918–934.Google Scholar
  41. Ritland, D., & Brower, L. (1991). The viceroy butterfly is not a batesian mimic. Nature, 350(6318), 497–498.CrossRefGoogle Scholar
  42. Rothschild, M. (1978). Hell’s Angels. Antenna, 2(2), 38–39.Google Scholar
  43. Schwanwitsch, B. N. (1924). On the groundplan of the wing-pattern in nymphalids and certain other families of rhopalocerous Lepidopetra. Proceedings of the Zoological Society of London B, 34, 509–528.Google Scholar
  44. Sheth, R., Marcon, L., Bastida, M. F., Junco, M., Quintana, L., Dahn, R., Kmita, M., Sharpe, J., & Ros, M. (2012). Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science, 338(6113), 1476–1480.CrossRefGoogle Scholar
  45. Süffert, F. (1927). Zur vergleichende Analyse der Schmetterlingszeichnung. Biologisches Zentralblatt, 47, 385–413.Google Scholar
  46. Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B, 237(641), 37–72.CrossRefGoogle Scholar
  47. Turner, J. R. G. (1984). Mimicry: The palatability spectrum and its consequences. In R. I. Vane-Wright & P. R. Ackery (Eds.), Biology of Butterflies (pp. 141–161). Londo: Academic Press.Google Scholar
  48. Vane-Wright, R. I. (1986). White monarchs. Antenna., 10(3), 117–118.Google Scholar
  49. Vila, R., Bell, C., Macniven, R., Goldman-Huertas, B., Ree, R., Marshall, C., Bálint, Z., Johnson, K., Benyamini, D., & Pierce, N. (2011). Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proceedings of the Royal Society B, 278(1719), 1–8.CrossRefGoogle Scholar
  50. Waddington, C. H. (1940). Organisers and Genes. Cambridge: Cambridge University Press.Google Scholar
  51. Wallace, A. (1870). Mimicry, and other protective resemblances among animals. Contributions to the Theory of Natural Selection: A series of essays. London: Macmillan & Co. 45–129.Google Scholar
  52. Wickler, W. (1968). Mimicry in plants and animals. New York: McGraw-Hill.Google Scholar
  53. Zhan, S., Zhang, W., Niitepõld, K., Hsu, J., Fernández Haeger, J., Zalucki, M. P., Altizer, S., de Roode, J. C., Reppert, S., & Kronforst, M. (2014). The genetics of monarch butterfly migration and warning colouration. Nature, 514(7522), 317–321.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dactyl FoundationNew YorkUSA
  2. 2.Fulbright Specialist Program, U.S. Department of StateBureau of Educational and Cultural AffairsWashingtonUSA

Personalised recommendations