pp 1–14 | Cite as

Viper as a Batesian Model – its Role in an Ecological Community

  • Jindřich BrejchaEmail author


Appearance of Old world vipers of genus Vipera serves various purposes including crypsis and aposematism. Recent research showed that the zigzag pattern represents strong signal to predators to avoid vipers as a prey. It is also possible that vipers function within ecological community as Batesian model for numerous mimics, including other reptiles, birds, and invertebrates. It is then showed that Batesian models need to have prominent features to sustain the mimicry system. The main modulation of this system is presented here as iconicity. Iconicity is treated as quantitative variable resulting from open dynamic process with multiple inputs, also including iconicity of previous states of system. Batesian mimicry is based on mimics adopting the iconicity of the model. It is an example of ecological facilitation, and as such, it is part of niche construction. Since Batesian mimicry is based on semiotic processes, it is a special case of ecological facilitation, namely semiotic facilitation.


Vipera Snakes Batesian mimicry Iconicity Semiosis Community dynamics Ecological facilitation 



Work is part of the research goal VaV10/300/PM DKRVO 2017/05 of Czech Ministry of Culture. I would like to dedicate this work to Kristýna Eliášová.


  1. Altieri, A. H., van Wesenbeeck, B. K., Bertness, M. D., & Silliman, B. R. (2010). Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology, 91, 1269–1275.CrossRefGoogle Scholar
  2. Andrén, C., & Nilson, G. (1981). Reproductive success and risk of predation in normal and melanistic colour morphs of the adder, Vipera berus. Biological Journal of the Linnean Society, 15, 235–246.CrossRefGoogle Scholar
  3. Aubret, F., & Mangin, A. (2014). The snake hiss: Potential acoustic mimicry in a viper–colubrid complex. Biological Journal of the Linnean Society, 113, 1107–1114.CrossRefGoogle Scholar
  4. Barnett, J. B., & Cuthill, I. C. (2014). Distance-dependent defensive coloration. Current Biology, 24, R1157–R1158.CrossRefGoogle Scholar
  5. Bates, H. W. (1862). XXXII. Contributions to an insect Fauna of the Amazon Valley. Lepidoptera: Heliconidæ. Transactions of the Linnean Society of London, 23, 495–566.CrossRefGoogle Scholar
  6. Bertness, M. D., & Callaway, R. (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191–193.CrossRefGoogle Scholar
  7. Bond, A. B. (2007). The evolution of color polymorphism: Crypticity, searching images, and apostatic selection. Annual Review of Ecology, Evolution, and Systematics, 38, 489–514.CrossRefGoogle Scholar
  8. Brodie, E. D. (1992). Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution, 46, 1284–1298.CrossRefGoogle Scholar
  9. Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. A., Kunstler, G., Liancourt, P., Tielbörger, K., Travis, J. M. J., & Anthelme, F. (2008). Facilitation in plant communities: The past, the present, and the future. Journal of Ecology, 96, 18–34.CrossRefGoogle Scholar
  10. Brown, J. L. (1965). Flicker and intermittent stimulation. Vision and Visual Perception, 1, 251–320.Google Scholar
  11. Bruno, J. F., Stachowicz, J. J., & Bertness, M. D. (2003). Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18, 119–125.CrossRefGoogle Scholar
  12. Caro, T. (2017). Wallace on coloration: Contemporary perspective and unresolved insights. Trends in Ecology & Evolution, 32, 23–30.CrossRefGoogle Scholar
  13. Clarke, B. (1962). Balanced polymorphism and the diversity of sympatric species. In D. Nichols (Ed.), Taxonomy and geography (pp. 47–70). Oxford: Systematics Association.Google Scholar
  14. Cott, H. B. (1940). Adaptive coloration in animals. London: Methuen.Google Scholar
  15. Emeneau, M. B. (1948). Taboos on animal names. Language, 24, 56–63.CrossRefGoogle Scholar
  16. Endler, J. A. (1978). A predator’s view of animal color patterns. Evolutionary Biology, 11, 319–364.Google Scholar
  17. Endler, J. A. (1981). An overview of the relationships between mimicry and crypsis. Biological Journal of the Linnean Society, 16, 25–31.CrossRefGoogle Scholar
  18. Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41, 315–352.CrossRefGoogle Scholar
  19. Endler, J. A., & Mappes, J. (2004). Predator mixes and the conspicuousness of aposematic signals. American Naturalist, 163, 532–547.CrossRefGoogle Scholar
  20. Fernández, E. (2014). The role of semiosis in evolution - from biosemiotics to technosemiotics. Gatherings biosemiotics 14, Middlesex University London, 13 pp.Google Scholar
  21. Forsman, A., & Ås, S. (1987). Maintenance of colour polymorphism in adder, Vipera berus, populations: A test of a popular hypothesis. Oikos, 50, 13–16.CrossRefGoogle Scholar
  22. Gans, C. (1961). Mimicry in procryptically colored snakes of the genus Dasypeltis. Evolution, 15, 72–91.CrossRefGoogle Scholar
  23. Gans, C., & Maderson, P. F. A. (1973). Sound producing mechanisms in recent reptiles: Review and comment. American Zoologist, 13, 1195–1203.CrossRefGoogle Scholar
  24. Greene, H. W., & McDiarmid, R. W. (1981). Coral snake mimicry: Does it occur? Science, 213, 1207–1212.CrossRefGoogle Scholar
  25. Greene, H. W., & McDiarmid, R. W. (2005). Wallace and Savage: heroes, theories and venomous snake mimicry. In B. I. Crother, C. Guyer, M. H. Wake, & M. A. Donnelly (Eds.), Ecology and evolution in the tropics: a herpetological perspective (pp. 190–208). Chicago: University of Chicago Press.Google Scholar
  26. Guilford, T. (1988). The evolution of conspicuous coloration. American Naturalist, 131, S7–S21.CrossRefGoogle Scholar
  27. Guimaraes, M., & Sawaya, R. J. (2011). Pretending to be venomous: Is a snake’s head shape a trustworthy signal to a predator? Journal of Tropical Ecology, 27, 437–439.CrossRefGoogle Scholar
  28. Guimaraes, M., & Sawaya, R. J. (2012). The snake head-shape signal: A reply to Valkonen & Mappes. Journal of Tropical Ecology, 28, 125–126.CrossRefGoogle Scholar
  29. Ham, A. D., Ihalainen, E., Lindström, L., & Mappes, J. (2006). Does colour matter? The importance of colour in avoidance learning, memorability and generalisation. Behavioral Ecology and Sociobiology, 60, 482–491.CrossRefGoogle Scholar
  30. Hanlon, R. T., Forsythe, J. W., & Joneschild, D. E. (1999). Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biological Journal of the Linnean Society, 66, 1–22.CrossRefGoogle Scholar
  31. Hebets, E. A., & Papaj, D. R. (2005). Complex signal function: Developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology, 57, 197–214.CrossRefGoogle Scholar
  32. Hossie, T. J., & Sherratt, T. N. (2013). Defensive posture and eyespots deter avian predators from attacking caterpillar models. Animal Behaviour, 86, 383–389.CrossRefGoogle Scholar
  33. Hunsinger, E., Root-Gutteridge, H., Cusano, D. A., & Parks, S. E. (2017). A description of defensive hiss types in the flat horned hissing cockroach (Aeluropoda insignis). Bioacoustics, 27, 261–271. Scholar
  34. Ioannou, C. C., & Krause, J. (2009). Interactions between background matching and motion during visual detection can explain why cryptic animals keep still. Biology Letters, 5, 191–193.CrossRefGoogle Scholar
  35. IUCN (2018). The IUCN red list of threatened species. Version 2017-3. <> downloaded on 31st January 2018.
  36. Jackson, J. F., Ingram, W., III, & Campbell, H. W. (1976). The dorsal pigmentation pattern of snakes as an antipredator strategy: A multivariate approach. American Naturalist, 110, 1029–1053.CrossRefGoogle Scholar
  37. Kazemi, B., Gamberale-Stille, G., Tullberg, B. S., & Leimar, O. (2014). Stimulus salience as an explanation for imperfect mimicry. Current Biology, 24, 965–969.CrossRefGoogle Scholar
  38. Kikuchi, D. W., Mappes, J., Sherratt, T. N., & Valkonen, J. K. (2016). Selection for multicomponent mimicry: Equal feature salience and variation in preferred traits. Behavioral Ecology, 27, 1515–1521.CrossRefGoogle Scholar
  39. Kikvidze, Z., & Callaway, R. M. (2009). Ecological facilitation may drive major evolutionary transitions. Bioscience, 59, 399–404.CrossRefGoogle Scholar
  40. Kirchner, W. H., & Röschard, J. (1999). Hissing in bumblebees: An interspecific defence signal. Insectes Sociaux, 46, 239–243.CrossRefGoogle Scholar
  41. Kleisner, K. (2010). Re-semblance and re-evolution: Paramorphism and semiotic co-option may explain the re-evolution of similar phenotypes. Sign Systems Studies, 38, 378–392.CrossRefGoogle Scholar
  42. Kleisner, K. (2011). Perceive, co-opt, modify, and live! Organism as a Centre of experience. Biosemiotics, 4, 223–241.CrossRefGoogle Scholar
  43. Kleisner, K. (2015). Semantic organs: The concept and its theoretical ramifications. Biosemiotics, 8, 367–379.CrossRefGoogle Scholar
  44. Kleisner, K., & Markoš, A. (2005). Semetic rings: Towards the new concept of mimetic resemblances. Theory in Biosciences, 123, 209–222.CrossRefGoogle Scholar
  45. Komárek, S. (2003). Mimicry, aposematism and related phenomena: Mimetism in nature and the history of its study (167 pp). Lincom Europa: München.Google Scholar
  46. Krams, I., Vrublevska, J., Koosa, K., Krama, T., Mierauskas, P., Rantala, M. J., & Tilgar, V. (2014). Hissing calls improve survival in incubating female great tits (Parus major). Acta Ethologica, 17, 83–88.CrossRefGoogle Scholar
  47. Kroon, C. (1975). A possible Müllerian mimetic complex among snakes. Copeia, 1975, 425–428.CrossRefGoogle Scholar
  48. Lindell, L. E., & Forsman, A. (1996). Sexual dichromatism in snakes: Support for the flicker-fusion hypothesis. Canadian Journal of Zoology, 74, 2254–2256.CrossRefGoogle Scholar
  49. Lindström, L., Alatalo, R. V., & Mappes, J. (1997). Imperfect Batesian mimicry—the effects of the frequency and the distastefulness of the model. Proceedings of the Royal Society B: Biological Sciences, 264, 149–153.CrossRefGoogle Scholar
  50. Mallet, J., & Joron, M. (1999). Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Annual Review of Ecology and Systematics, 30, 201–233.CrossRefGoogle Scholar
  51. Maran, T. (2007). Semiotic interpretations of biological mimicry. Semiotica, 2007, 223–248.CrossRefGoogle Scholar
  52. Maran, T. (2011). Becoming a sign: The mimic’s activity in biological mimicry. Biosemiotics, 4, 243–257.CrossRefGoogle Scholar
  53. Maran, T., & Kleisner, K. (2010). Towards an evolutionary biosemiotics: Semiotic selection and semiotic co-option. Biosemiotics, 3, 189–200.CrossRefGoogle Scholar
  54. Merriam-Webster (2018). “Adder.” <> Accessed on 31st January 2018.
  55. Moser, A., Graber, C., & Freyvogel, T. A. (1984). Observations sur l’ethologie et l’evolution d’une population de Vipera aspis (L.) au nord du Jura Suisse. Amphibia-Reptilia, 5, 373–393.CrossRefGoogle Scholar
  56. Neumeyer, R. (1987). Density and seasonal movements of the adder (Vipera berus L. 1758) in a subalpine environment. Amphibia-Reptilia, 8, 259–275.CrossRefGoogle Scholar
  57. Niskanen, M., & Mappes, J. (2005). Significance of the dorsal zigzag pattern of Vipera latastei gaditana against avian predators. Journal of Animal Ecology, 74, 1091–1101.CrossRefGoogle Scholar
  58. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (1996). Niche construction. American Naturalist, 147, 641–648.CrossRefGoogle Scholar
  59. Öhman, A., & Mineka, S. (2003). The malicious serpent: Snakes as a prototypical stimulus for an evolved module of fear. Current Directions in Psychological Science, 12, 5–9.CrossRefGoogle Scholar
  60. Pfennig, D. W. (2016). Evolutionary biology: To mimicry and back again. Nature, 534, 184–185.CrossRefGoogle Scholar
  61. Pfennig, D. W., & Mullen, S. P. (2010). Mimics without models: causes and consequences of allopatry in Batesian mimicry complexes. Proceedings of the Royal Society B: Biological Sciences, 277, 2577–2585.CrossRefGoogle Scholar
  62. Pfennig, D. W., Harcombe, W. R., & Pfennig, K. S. (2001). Frequency-dependent Batesian mimicry. Nature, 410, 323.CrossRefGoogle Scholar
  63. Pfennig, D. W., Harper, G. R., Brumo, A. F., Harcombe, W. R., & Pfennig, K. S. (2007). Population differences in predation on Batesian mimics in allopatry with their model: Selection against mimics is strongest when they are common. Behavioral Ecology and Sociobiology, 61, 505–511.CrossRefGoogle Scholar
  64. Pough, F. H. (1976). Multiple cryptic effects of crossbanded and ringed patterns of snakes. Copeia, 1976, 834–836.CrossRefGoogle Scholar
  65. Pough, F. H. (1988). Mimicry of vertebrates: Are the rules different? American Naturalist, 131, S67–S102.CrossRefGoogle Scholar
  66. Rabosky, A. R. D., Cox, C. L., Rabosky, D. L., Holmes, I. A., Feldman, A., & McGuire, J. A. (2016). Coral snakes predict the evolution of mimicry across New World snakes. Nature Communications, 7, 11484.CrossRefGoogle Scholar
  67. Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M. P., Schmitz, O. J., Smith, D. W., Wallach, A. D., & Wirsing, A. J. (2014). Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484.CrossRefGoogle Scholar
  68. Rix, H., & Kümmel, M. (2001). Lexikon der indogermanischen Verben, Die Wurzeln und ihre Primärstammbildungen (822 pp). Dr. Ludwig Reichert Verlag: Wiesbaden.Google Scholar
  69. Rodríguez-Robles, J. A., & De Jesús-Escobar, J. M. (2000). Molecular systematics of New World gopher, bull, and pinesnakes (Pituophis: Colubridae), a transcontinental species complex. Molecular Phylogenetics and Evolution, 14, 35–50.CrossRefGoogle Scholar
  70. Rowe, M. P., Coss, R. G., & Owings, D. H. (1986). Rattlesnake rattles and burrowing owl hisses: A case of acoustic Batesian mimicry. Ethology, 72, 53–71.CrossRefGoogle Scholar
  71. Ruxton, G. D., Franks, D. W., Balogh, A. C. V., & Leimar, O. (2008). Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey. Evolution, 62, 2913–2921.CrossRefGoogle Scholar
  72. Santos, J. C., Baquero, M., Barrio-Amorós, C., Coloma, L. A., & Erdtmann, L. K. (2014). Aposematism increases acoustic diversification and speciation in poison frogs. Proceedings of the Royal Society B: Biological Sciences, 281, 20141761.CrossRefGoogle Scholar
  73. Santos, X., Azor, J. S., Cortés, S., Rodríguez, E., Larios, J., & Pleguezuelos, J. M. (2017). Ecological significance of dorsal polymorphism in a Batesian mimic snake. Current Zoology.
  74. Sherbrooke, W. C., & Westphal, M. F. (2006). Responses of greater roadrunners during attacks on sympatric venomous and nonvenomous snakes. Southwest Naturalist, 51, 41–47.CrossRefGoogle Scholar
  75. Sherratt, T. N., & Beatty, C. D. (2003). The evolution of warning signals as reliable indicators of prey defense. American Naturalist, 162, 377–389.CrossRefGoogle Scholar
  76. Shiffrar, M., & Lorenceau, J. (1996). Increased motion linking across edges with decreased luminance contrast, edge width and duration. Vision Research, 36, 2061–2067.CrossRefGoogle Scholar
  77. Shine, R., & Madsen, T. (1994). Sexual dichromatism in snakes of the genus Vipera: A review and a new evolutionary hypothesis. Journal of Herpetology, 28, 114–117.CrossRefGoogle Scholar
  78. Smal-Stocki, R. (1950). Taboos on animal names in Ukrainian. Language, 26, 489–493.CrossRefGoogle Scholar
  79. Smith, R. H. (1974). Is the slow worm a Batesian mimic? Nature, 247, 571–572.CrossRefGoogle Scholar
  80. Souchet, J., & Aubret, F. (2016). Revisiting the fear of snakes in children: The role of aposematic signalling. Scientific Reports, 6, 37619.CrossRefGoogle Scholar
  81. Speybroeck, J., Beukema, W., Bok, B., & Van Der Voort, J. (2016). Field guide to the amphibians and reptiles of Britain and Europe (432 pp). London: Bloomsbury Publishing.Google Scholar
  82. Stachowicz, J. J. (2001). Mutualism, facilitation, and the structure of ecological communities: Positive interactions play a critical, but underappreciated, role in ecological communities by reducing physical or biotic stresses in existing habitats and by creating new habitats on. AIBS Bulletin, 51, 235–246.Google Scholar
  83. Štěrbová, L. (2017). Etymologie vybraných názvů zvířat v bulharštině (59 pp). Brno: Masaryk University.Google Scholar
  84. Stevens, M. (2007). Predator perception and the interrelation between different forms of protective coloration. Proceedings of the Royal Society B: Biological Sciences, 274, 1457–1464.CrossRefGoogle Scholar
  85. Sweet, S. S. (1985). Geographic variation, convergent crypsis and mimicry in gopher snakes (Pituophis melanoleucus) and western rattlesnakes (Crotalus viridis). Journal of Herpetology, 19, 55–67.CrossRefGoogle Scholar
  86. Titcomb, G. C., Kikuchi, D. W., & Pfennig, D. W. (2014). More than mimicry? Evaluating scope for flicker-fusion as a defensive strategy in coral snake mimics. Current Zoology, 60, 123–130.CrossRefGoogle Scholar
  87. Tullberg, B. S., Merilaita, S., & Wiklund, C. (2005). Aposematism and crypsis combined as a result of distance dependence: Functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society B: Biological Sciences, 272, 1315–1321.CrossRefGoogle Scholar
  88. Valkonen, J. K., & Mappes, J. (2012). Comments on Guimarães & Sawaya. Pretending to be venomous: Is a snake’s head shape a trustworthy signal to a predator? Journal of Tropical Ecology, 28, 123–124.CrossRefGoogle Scholar
  89. Valkonen, J. K., & Mappes, J. (2014). Resembling a viper: Implications of mimicry for conservation of the endangered smooth snake. Conservation Biology, 28, 1568–1574.CrossRefGoogle Scholar
  90. Valkonen, J., Niskanen, M., Björklund, M., & Mappes, J. (2011a). Disruption or aposematism? Significance of dorsal zigzag pattern of European vipers. Evolutionary Ecology, 25, 1047–1063.CrossRefGoogle Scholar
  91. Valkonen, J. K., Nokelainen, O., & Mappes, J. (2011b). Antipredatory function of head shape for vipers and their mimics. PLoS One, 6, e22272.CrossRefGoogle Scholar
  92. Vallin, A., Jakobsson, S., Lind, J., & Wiklund, C. (2005). Prey survival by predator intimidation: An experimental study of peacock butterfly defence against blue tits. Proceedings of the Royal Society of London B: Biological Sciences, 272, 1203–1207.CrossRefGoogle Scholar
  93. Waldbauer, G. P., & Sternburg, J. G. (1987). Experimental field demonstration that two aposematic butterfly color patterns do not confer protection against birds in northern Michigan. American Midland Naturalist, 118, 145–152.CrossRefGoogle Scholar
  94. Wang, M.-Y., Vasas, V., Chittka, L., & Yen, S.-H. (2017). Sheep in wolf’s clothing: Multicomponent traits enhance the success of mimicry in spider-mimicking moths. Animal Behaviour, 127, 219–224.CrossRefGoogle Scholar
  95. Werner, Y. L. (1983). Behavioural triangulation of the head in three boigine snakes: Possible cases of mimicry. Israel Journal of Zoology, 32, 205–228.Google Scholar
  96. Werner, Y. L., & Frankenberg, E. (1982). Head triangulation in two colubrine snakes: Probable behavioural reinforcement of Batesian mimicry. Israel Journal of Zoology, 31, 137–150.Google Scholar
  97. Wertheimer, M. (1912). Experimentelle studien uber das sehen von bewegung. Zeitschrift fur Psychologie, 61, 161–265.Google Scholar
  98. Wilmers, C. C., Crabtree, R. L., Smith, D. W., Murphy, K. M., & Getz, W. M. (2003). Trophic facilitation by introduced top predators: Grey wolf subsidies to scavengers in Yellowstone National Park. Journal of Animal Ecology, 72, 909–916.CrossRefGoogle Scholar
  99. Wolf, M., & Werner, Y. L. (1994). The striped colour pattern and striped/non-striped polymorphism in snakes (Reptilia: Ophidia). Biological Reviews, 69, 599–610.CrossRefGoogle Scholar
  100. Wüster, W., Allum, C. S. E., Bjargardóttir, I. B., Bailey, K. L., Dawson, K. J., Guenioui, J., Lewis, J., McGurk, J., Moore, A. G., Niskanen, M., & Pollard, C. P. (2004). Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proceedings of the Royal Society B: Biological Sciences, 271, 2495–2499.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Philosophy and History of Science, Faculty of ScienceCharles UniversityPraha 2Czech Republic
  2. 2.Department of ZoologyNatural History Museum, National MuseumPraha 1Czech Republic

Personalised recommendations