, Volume 12, Issue 1, pp 79–98 | Cite as

The Dual Nature of Mimicry: Organismal Form and Beholder’s Eye

  • Karel KleisnerEmail author
  • S. Adil Saribay


Mimicry is often cited as a compelling demonstration of the power of natural selection. By adopting signs of a protected model, mimics usually gain a reproductive advantage by minimising the likelihood of being preyed upon. Yet while natural selection plays a role in the evolution of mimicry, it can be doubted whether it fully explains it. Mimicry is mediated by the emergence of formally analogous patterns (visual, olfactory, or acoustic) between unrelated organisms and by the fact that these patterns are meaningfully perceived as similar. The perception of similarity is always perceiver-dependent. Similarities between for instance colours are psychophysical phenomena, and their existence is conditioned by an intimate interdependence between perceivers and perceptible reality. In this sense, mimicry is by its very nature dualistic. The analogy in form needed to establish a mimicry does not emerge out of the blue. It depends on the ecological context and the morphogenetic potential of a species. In our proposal, we take into account both the developmental generators of formally analogous structures and the perceptual and cognitive processes that lead to the emergence of mimicry. We show that some of the rather controversial and nowadays largely neglected ideas found in non-Anglo-Saxon literature on mimicry (e.g. writings by Th. Eimer, F. Heikertinger, or N. Vavilov) deserve closer attention. We suggest that the diversity of mimicry types is due to differences in variational properties of form-generating and perceptual systems among diverse groups of organisms. We also anticipate that processes studied within social psychology and emotion research (such as the formation of a first impression or activation of the fear module) probably take place, at least in a simplified form, also in non-human animals. Finally, we argue that these meaning-attributive processes underlie the functionality of mimicry.


Semantic organ Mimicry Orthogenesis Facilitated variation First impression Semiotic co-option 



We thank Anna Pilátová for helpful comments and language suggestions. We are grateful to two anonymous reviewers for their valuable suggestions. This work has been supported by Charles University Research Centre program No. 204056.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Arendt, H. (1978). The life of the mind. New York: A Harvest Book.Google Scholar
  2. Bader, R. S. (1955). Variability and evolutionary rate in the oreodonts. Evolution, 9(2), 119–140.Google Scholar
  3. Bates, H. W. (1862). XXXII. Contributions to an insect fauna of the Amazon Valley. Lepidoptera: Heliconidæ. Transactions of the Linnean Society of London, 23(3), 495–566.Google Scholar
  4. Berg, L. S. (1926). Nomogenesis or evolution determined by law. London: Constable & Co..Google Scholar
  5. Blakemore, C., Nachmias, J., & Sutton, P. (1970). The perceived spatial frequency shift: Evidence for frequency-selective neurones in the human brain. The Journal of Physiology, 210(3), 727–750.Google Scholar
  6. Bowler, P. J. (1979). Theodor Eimer and orthogenesis: Evolution by 'definitely directed variation. Journal of the History of Medicine and Allied Sciences, 34(1), 40–73.Google Scholar
  7. Bowler, P. J. (2005). Variation from Darwin to the modern synthesis. In B. Hallgrímsson & B. K. Hall (Eds.), Variation: A central concept in biology (pp. 9–28). Burlington: Elsevier.Google Scholar
  8. Bowler, P. J. (2013). Darwin deleted: Imagining a world without Darwin. Chicago: University of Chicago Press.Google Scholar
  9. Cope, E. D. (1896). The primary factors of organic evolution. Chicago: The Open Court Publishing Company.Google Scholar
  10. Dalziell, A. H., & Welbergen, J. A. (2016). Mimicry for all modalities. Ecology Letters, 19(6), 609–619.Google Scholar
  11. Diez, R. (1896). Untersuchungen über die Skulptur der Flügedecken bei der Gattung Carabus (Vol. 4, Tübinger Zoologische Arbeiten. 2. Band). Leipzig: W. Engelmann.Google Scholar
  12. Dittrich, W., Gilbert, F., Green, P., Mcgregor, P., & Grewcock, D. (1993). Imperfect mimicry: A pigeon's perspective. Proceedings of the Royal Society of London B: Biological Sciences, 251(1332), 195–200.Google Scholar
  13. Eimer, T. (1874). Zoologische Studien auf Capri: Lacerta muralia coerulea; ein Beitrag zur Darwin'schen Lehr (Vol. 2). Leipzig: W. Engelmann.Google Scholar
  14. Eimer, T. (1881). Untersuchungen über das Variieren der Mauereidechse. Berlin: Nicolai.Google Scholar
  15. Eimer, T. (1890). Organic evolution. London: Macmillan.Google Scholar
  16. Eimer, T. (1898). On orthogenesis: And the impotence of natural selection in species formation (Vol. 29). Chicago: Open Court Publishing Company.Google Scholar
  17. Finkbeiner, S. D., Briscoe, A. D., & Reed, R. D. (2014). Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution, 68(12), 3410–3420.Google Scholar
  18. Gerhart, J., & Kirschner, M. (2007). The theory of facilitated variation. Proceedings of the National Academy of Sciences, 104(suppl 1), 8582–8589.Google Scholar
  19. Gilbert, L. (2003). Adaptive novelty through introgression in Heliconius wing patterns: Evidence for shared genetic “tool box” from synthetic hybrid zones and a theory of diversification. In C. Boggs, W. Watt, & P. Ehrlich (Eds.), Ecology and evolution taking flight: Butterflies as model systems (pp. 281–318). Chicago: University of Chicago Press.Google Scholar
  20. Gomes, N., Silva, S., Silva, C. F., & Soares, S. C. (2017). Beware the serpent: The advantage of ecologically–relevant stimuli in accessing visual awareness. Evolution and Human Behavior, 38(2), 227–234.Google Scholar
  21. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge: Harvard University Press.Google Scholar
  22. Gould, S. J., & Lewontin, R. C. (1979). Spandrels of san–Marco and the panglossian paradigm – A critique of the Adaptationist program. Proceedings of the Royal Society of London Series B–Biological Sciences, 205(1161), 581–598.Google Scholar
  23. Gould, S. J., & Vrba, E. (1982). Exaptation – A missing term in the science of form. Paleobiology, 8, 4–15.Google Scholar
  24. Grimaldi, D., & Engel, M. S. (2005). Evolution of the insects. Cambridge: University Cambridge Press.Google Scholar
  25. Haacke, W. (1893). Gestalt und Vererbung. Eine Entwickelungsmechanik der Organismen. Leipzig: T.O. Weigel Nachfolger.Google Scholar
  26. Heikertinger, F. (1954). Rätsel der Mimikry und seine Lösung. In Jena: Gustav Fischer.Google Scholar
  27. Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.Google Scholar
  28. Howse, P., & Allen, J. A. (1994). Satyric mimicry: The evolution of apparent imperfection. Proceedings of the Royal Society of London B: Biological Sciences, 257(1349), 111–114.Google Scholar
  29. Janzen, D. H., Hallwachs, W., & Burns, J. M. (2010). A tropical horde of counterfeit predator eyes. Proceedings of the National Academy of Sciences, 107(26), 11659–11665.Google Scholar
  30. Jiggins, C. D. (2008). Ecological speciation in mimetic butterflies. AIBS Bulletin, 58(6), 541–548.Google Scholar
  31. Kikuchi, D. W., & Pfennig, D. W. (2013). Imperfect mimicry and the limits of natural selection. The Quarterly Review of Biology, 88(4), 297–315.Google Scholar
  32. Kleisner, K. (2008a). Mezi formou a funkcí aneb po stopách kníţete niternosti. K základům Portmannovy teoretické biologie. In K. Kleisner (Ed.), Biologie ve službách zjevu. K teoreticko–biologickým myšlenkám Adolfa Portmanna (pp. 109–135). Červený Kostelec: Pavel Mervart.Google Scholar
  33. Kleisner, K. (2008b). Homosemiosis, mimicry and superficial similarity: Notes on the conceptualization of independent emergence of similarity in biology. Theory in Biosciences, 127(1), 15–21.Google Scholar
  34. Kleisner, K. (2015). Semantic organs: The concept and its theoretical ramifications. Biosemiotics, 8(3), 367–379.Google Scholar
  35. Kleisner, K., & Maran, T. (2014). Visual communication in animals: Applying a Portmannian and Uexküllian biosemiotic approach. In D. Machin (Ed.), Visual communication (pp. 659–676). Berlin: De Gruyter Mouton.Google Scholar
  36. Kleisner, K., Keil, P., & Jaroš, F. (2012). Biogeography of elytral ornaments in Palearctic genus Carabus: Disentangling the effects of space, evolution and environment at a continental scale. Evolutionary Ecology, 26(4), 1025–1040.Google Scholar
  37. Komárek, S. (2003). Mimicry, aposematism and related phenomena. Mimetism in nature and the history of its study. München: Lincom Europa.Google Scholar
  38. Kronforst, M. R., & Papa, R. (2015). The functional basis of wing patterning in Heliconius butterflies: The molecules behind mimicry. Genetics, 200(1), 1–19.Google Scholar
  39. Lavoué, S., Miya, M., Arnegard, M. E., McIntyre, P. B., Mamonekene, V., & Nishida, M. (2011). Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence. Proceedings of the Royal Society of London B: Biological Sciences, 278(1708), 1003–1008.Google Scholar
  40. LeDoux, J. (1998). The emotional brain: The mysterious underpinnings of emotional life. New York: Simon and Schuster.Google Scholar
  41. Lee, K., Byatt, G., & Rhodes, G. (2000). Caricature effects, distinctiveness, and identification: Testing the face–space framework. Psychological Science, 11(5), 379–385.Google Scholar
  42. Levit, G. S., & Olsson, L. (2006). "Evolution on rails": Mechanisms and levels of orthogenesis. Annals of the History and Philosophy of Biology, 11, 99–138.Google Scholar
  43. Lundqvist, D., Esteves, F., & Ohman, A. (1999). The face of wrath: Critical features for conveying facial threat. Cognition & Emotion, 13(6), 691–711.Google Scholar
  44. Maran, T. (2001). Mimicry: Towards a semiotic understanding of nature. Sign Systems Studies, 29(1), 325–339.Google Scholar
  45. Maran, T. (2017). Mimicry and meaning: Structure and semiotics of biological mimicry (series biosemiotics, Vol. 16). Berlin: Springer.Google Scholar
  46. Maran, T., & Kleisner, K. (2010). Towards an evolutionary biosemiotics: Semiotic selection and semiotic co–option. Biosemiotics, 3(2), 189–200.Google Scholar
  47. Martin, A., Papa, R., Nadeau, N. J., Hill, R. I., Counterman, B. A., Halder, G., Jiggins, C. D., Kronforst, M. R., Long, A. D., McMillan, W. O., & Reed, R. D. (2012). Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proceedings of the National Academy of Sciences, 109(31), 12632–12637.Google Scholar
  48. Maruyama, M., & Parker, J. (2017). Deep-time convergence in rove beetle symbionts of Army ants. Current Biology, 27(6), 920–926.Google Scholar
  49. Mayr, E. (2001). What evolution is. New York: Basic Books.Google Scholar
  50. McMillan, W. O., Jiggins, C. D., & Mallet, J. (1997). What initiates speciation in passion–vine butterflies? Proceedings of the National Academy of Sciences, 94(16), 8628–8633.Google Scholar
  51. Merrill, R. M., Chia, A., & Nadeau, N. J. (2014). Divergent warning patterns contribute to assortative mating between incipient Heliconius species. Ecology and Evolution, 4(7), 911–917.Google Scholar
  52. Meyer, A. (1999). Homology and homoplasy: The retention of genetic programmes. In G. R. Bock & G. Cardew (Eds.), Homology (pp. 141–153). Chichester: Wiley.Google Scholar
  53. Naisbit, R. E., Jiggins, C. D., Linares, M., Salazar, C., & Mallet, J. (2002). Hybrid sterility, Haldane's rule and speciation in Heliconius cydno and H. melpomene. Genetics, 161(4), 1517–1526.Google Scholar
  54. Nei, M. (2005). Selectionism and neutralism in molecular evolution. Molecular Biology and Evolution, 22(12), 2318–2342.Google Scholar
  55. Nei, M. (2007). The new mutation theory of phenotypic evolution. Proceedings of the National Academy of Sciences, 104(30), 12235–12242.Google Scholar
  56. Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108(3), 483–522.Google Scholar
  57. Ord, T. J., & Summers, T. C. (2015). Repeated evolution and the impact of evolutionary history on adaptation. BMC Evolutionary Biology, 15(1), 137.Google Scholar
  58. Pardo-Diaz, C., Salazar, C., Baxter, S. W., Merot, C., Figueiredo-Ready, W., Joron, M., et al. (2012). Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genetics, 8(6), e1002752.Google Scholar
  59. Pasteur, G. (1982). A classificatory review of mimicry systems. Annual Review of Ecology and Systematics, 13(1), 169–199.Google Scholar
  60. Penney, H. D., Hassall, C., Skevington, J. H., Abbott, K. R., & Sherratt, T. N. (2012). A comparative analysis of the evolution of imperfect mimicry. Nature, 483(7390), 461–464.Google Scholar
  61. Plate, L. (1922). Allgemeine Zoologie und Abstammungslehre (I. Teil). Jena: Fischer.Google Scholar
  62. Portmann, A. (1965). Erhaltung and Erscheinung als Aufgaben des Lebendigen. Naturwissenschaft and Medizin, 8, 3–17.Google Scholar
  63. Pough, F. H. (1988). Mimicry of vertebrates: Are the rules different? The American Naturalist, 131, S67–S102.Google Scholar
  64. Reed, R. D., Papa, R., Martin, A., Hines, H. M., Counterman, B. A., Pardo-Diaz, C., Jiggins, C. D., Chamberlain, N. L., Kronforst, M. R., Chen, R., Halder, G., Nijhout, H. F., & McMillan, W. O. (2011). Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 333(6046), 1137–1141.Google Scholar
  65. Reitter, E. (1908). Fauna Germanica (Vol. Band I.). Stuttgart: Lutz.Google Scholar
  66. Rhodes, G., Brennan, S., & Carey, S. (1987). Identification and ratings of caricatures: Implications for mental representations of faces. Cognitive Psychology, 19(4), 473–497.Google Scholar
  67. Riedl, R. (1978). Order in living organisms: A systems analysis of evolution. New York: Wiley.Google Scholar
  68. Rothschild, M. (1984). Aide mémoire mimicry. Ecological Entomology, 9(3), 311–319.Google Scholar
  69. Schoch, R. R. (2010). Riedl's burden and the body plan: Selection, constraint, and deep time. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 314(1), 1–1),10.Google Scholar
  70. Senior, C., Barnes, J., Jenkins, R., Landau, S., Philips, M. L., & David, A. S. (1999). Attribution of social dominance and maleness to schematic faces. Social Behavior and Personality, 27(4), 331–338.Google Scholar
  71. Simpson, G. G. (1964). Organisms and molecules in evolution. Science, 146, 1535–1538.Google Scholar
  72. Smith, J., & Kronforst, M. R. (2013). Do Heliconius butterfly species exchange mimicry alleles? Biology Letters, 9(4), 20130503.Google Scholar
  73. Souchet, J., & Aubret, F. (2016). Revisiting the fear of snakes in children: The role of aposematic signalling. Scientific Reports, 6, 37619.Google Scholar
  74. Stirrat, M., & Perrett, D. I. (2010). Valid facial cues to cooperation and trust: Male facial width and trustworthiness. Psychological Science, 21(3), 349–354.Google Scholar
  75. Tanaka, J. W., & Corneille, O. (2007). Typicality effects in face and object perception: Further evidence for the attractor field model. Perception & Psychophysics, 69(4), 619–627.Google Scholar
  76. Thayer, G. H., & Thayer, A. H. (1909). Concealing–coloration in the animal kingdom. New York: Macmillan.Google Scholar
  77. Todorov, A., Pakrashi, M., & Oosterhof, N. N. (2009). Evaluating faces on trustworthiness after minimal time exposure. Social Cognition, 27(6), 813–833.Google Scholar
  78. Třebický, V., Saribay, S. A., Kleisner, K., Kočnar, T., Valentova, J. V., Varella, M. A. C., Akoko, R. M., & Havlíček, J. (2018). Cross-cultural evidence for apparent racial outgroup advantage: Congruencebetween perceived facial aggressiveness and fighting success. Scientific Reports, 8(1), 9767.Google Scholar
  79. Tullberg, B. S., Merilaita, S., & Wiklund, C. (2005). Aposematism and crypsis combined as a result of distance dependence: Functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society of London B: Biological Sciences, 272(1570), 1315–1321.Google Scholar
  80. Ulett, M. A. (2014). Making the case for orthogenesis: The popularization of definitely directed evolution (1890–1926). Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 45, 124–132.Google Scholar
  81. Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and race in face recognition. The Quarterly Journal of Experimental Psychology, 43(2), 161–204.Google Scholar
  82. Vane-Wright, R. I. (1980). On the definition of mimicry. Biological Journal of the Linnean Society, 13(1), 1–6.Google Scholar
  83. Vavilov, N. I. (1922). The law of homologous series in variation. Journal of Genetics, 12(1), 47–89.Google Scholar
  84. Vavilov, N. I. (1967). Zakon gomologicheskich riadov v nasledsvennoi izmenchivosti. Leningrad: Nauka.Google Scholar
  85. Wake, D. B. (1991). Homoplasy: The result of natural selection, or evidence of design limitations? The American Naturalist, 138(3), 543–567.Google Scholar
  86. Whiting, M. F., Bradler, S., & Maxwell, T. (2003). Loss and recovery of wings in stick insects. Nature, 421(6920), 264–267.Google Scholar
  87. Wickler, W. (1968). Mimikry : Nachahmung und Täuschung in der Natur. München: Kindler.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Philosophy and History of ScienceCharles UniversityPraha 2Czech Republic
  2. 2.Department of PsychologyBoğaziçi UniversityIstanbulTurkey

Personalised recommendations