Advertisement

Biosemiotics

, Volume 9, Issue 3, pp 331–343 | Cite as

Distributed Heredity and Development: a Heterarchical Perspective

  • Jana ŠvorcováEmail author
Article

Abstract

This review paper discusses the perspective of complex biological systems as applied to inheritance and ontogeny, focusing on the continuity of genetic, epigenetic (transgenerational) and microbiotic inheritance. The informational processuality within this continuity can be used as to exemplify the insufficiency of hierarchical concepts in grasping the complex and integrated nature of biological processes. The argument follows Bruni and Giorgi (Progress in Biophysics and Molecular Biology 119, 481–92, 2015) in emphasizing that while structures and substrates are organized hierarchically, communicational processes are organized heterarchically. The essay also argues the insufficiency of a single, basic, i.e. genetic level of description, which is the prevalent idea of twentieth century biology, to explain all phenotypic variation. I argue that inheritance and development cannot be fully explained by some sub- or super-ordination and that such descriptions are merely heuristic tools that do not reflect the nature of such processes.

Keywords

Transgenerational epigenetic inheritance Microbiota Heterarchy 

Notes

Acknowledgments

This paper was supported by the project Linguistic and lexicostatic analysis in collaboration of linguistics, mathematics, biology and psychology no. CZ.1.07/2.3.00/20.0161, the Grant Agency of The Czech Republic 13-24275S and also by Charles University in Prague within the UNCE project 204004.

References

  1. Biel, M., Wascholowski, V., & Giannis, A. (2005). Epigenetics-an epicenter of gene regulation: histones and histone-modifying enzymes. Angewandte Chemie (International Ed. in English), 44, 3186–3216.CrossRefGoogle Scholar
  2. Bruni, L. E. (2007). Cellular Semiotics and Signal Transduction. In M. Barbieri (Ed.), Introduction to Biosemiotics. The New Biological Synthesis. Berlin: Heidelberg: Springer.Google Scholar
  3. Bruni, L. E., & Giorgi, F. (2015). Towards a heterarchical approach to biology and cognition. Progress in Biophysics and Molecular Biology, 119, 481–492.CrossRefPubMedGoogle Scholar
  4. Brykczynska, U., Hisano, M., Erkek, S., Ramos, L., Oakeley, E. J., Roloff, T. C., Beisel, C., Schübeler, D., Stadler, M. B., & Peters, A. H. F. M. (2010). Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nature Structural & Molecular Biology, 17, 679–687.CrossRefGoogle Scholar
  5. Chiu, L., & Gilbert, S. F. (2015). The Birth of the Holobiont: Multi-species Birthing Through Mutual Scaffolding and Niche Construction. Biosemiotics, 8, 191–210.CrossRefGoogle Scholar
  6. Consortium, H. M. P. (2012). Nature, 486, 207–214.CrossRefGoogle Scholar
  7. Cropley, J. E., Suter, C. M., Beckman, K. B., & Martin, D. I. K. (2006). Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. PNAS, 103, 17308–17312.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cvrčková, F., & Markoš, A. (2005). Beyond bioinformatics: Can similarity be measured in the digital world? Journal of Biosemiotics, 1, 93–112.Google Scholar
  9. Davidson, E. H. (2006). The regulatory genome. Gene regulatory networks in development and evolution. Amsterdam: Academic Press.Google Scholar
  10. de la Cruz, X., Lois, S., & Molina, S. S. (2005). Do protein motifs read the histone code? BioEssays, 27, 164–175.CrossRefPubMedGoogle Scholar
  11. Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17, 89–96.CrossRefPubMedGoogle Scholar
  12. Faltýnek, D. (2010). Evolvování Romana Jakobsona. In A. Markoš (Ed.), Jazyková metafora živého .Pavel MervartGoogle Scholar
  13. Funkhouser, L. J., & Bordenstein, S. R. (2013). Mom knows best: the universality of maternal microbial transmission. PLoS Biology, 11, e1001631.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gilbert, S. F. (2014). A holobiont birth narrative: the epigenetic transmission of the human microbiome. Frontiers in Genetics, 5, 282.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gilbert, S. F., & Epel, D. (2009). Ecological developmental biology. Integrating epigenetics, medicine, and evolution. Sunderland: Sinauer Associates.Google Scholar
  16. Gissis, S. B., & Jablonka, E. (2011). Transformations of Lamarckism. In From Subtle Fluids to Molecular Biology, Vienna Series in Theoretical Biology. Cambridge: MIT Press.Google Scholar
  17. Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., Beaumontm, M., Van Treuren, W., Knight, R., Bell, J. T., Spector, T. D., Clark, A. G., & Ley, R. E. (2014). Human genetics shape the gut microbiome. Cell, 159, 789–799.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Grossniklaus, U., Kelly, W. G., Ferguson-Smith, A. C., Pembrey, M., & Lindquist, S. (2013). Transgenerational epigenetic inheritance: how important is it? Nature Reviews Genetics, 14, 228–235.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hammoud, S. S., Nix, D. A., Zhang, H., Purwar, J., Carrell, D. T., & Cairns, B. R. (2009). Distinctive chromatin in human sperm packages genes for embryo development. Nature, 460, 473–478.PubMedPubMedCentralGoogle Scholar
  20. Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155, 1451–1463.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jablonka, E., & Lamb, M. J. (2005). Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. MIT Press.Google Scholar
  22. Jablonka, E., & Raz, G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84, 131–176 Also available at http://ts-si.org/files/JablonkaQtrRevBio2009.pdf.CrossRefPubMedGoogle Scholar
  23. Jakobson, R. (1971). Selected Writings II. The Hague, Mounton: Word and language.Google Scholar
  24. Ji, S. (1997). Isomorphism between cell and human languages: molecular biological, bioinformatic and linguistic implications. Biosystems, 44, 17–39.CrossRefPubMedGoogle Scholar
  25. Ji, S. (1999). The linguistics of DNA: Words, Sentences, Grammar, Phonetics, and Semantics. In: Molecular Strategies in Biological Evolution. Annals of the New York Academy of Sciences, 870, 411–417.CrossRefPubMedGoogle Scholar
  26. Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., Angenent, L. T., & Ley, R. E. (2011). Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 1, 4578–4585.CrossRefGoogle Scholar
  27. Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., & Odling-Smee, J. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proceeedings of The Royal Society Publishing B, 282, 20151019.CrossRefGoogle Scholar
  28. Lee, Y. K., & Mazmanian, S. K. (2010). Has the microbiota played a critical role in the evolution of the adaptive immune system? Science, 330, 1768–1773.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lhotský, J., Pranab, D., Švorcová, J., & Markoš, A. (2016 to appear). Expanding the concept of umwelt. Submitted to Theory in Biosciences 31.7.2015Google Scholar
  30. Margulis, L., & Fester, R. (1991). Symbiosis as a Source of Evolutionary Innovation. Cambridge: MIT Press.Google Scholar
  31. Markoš, A., & Faltýnek, D. (2011). Language metaphors of the living. Biosemiotics, 4, 171–200.CrossRefGoogle Scholar
  32. Markoš, A., & Švorcová, J. (2009). Recorded versus organic memory: interaction of two worlds as demonstrated by the chromatin dynamics. Biosemiotics, 2, 131–149.CrossRefGoogle Scholar
  33. Marks, J. (2002). What it means to be 98 % chimpanzee: apes, people, and their genes. University of California Press.Google Scholar
  34. Mattick, J. S., Amaral, P. P., Dinger, M. E., Mercer, T. R., & Mehler, M. F. (2009). RNA regulation of epigenetic processes. BioEssays, 31, 51–59.CrossRefPubMedGoogle Scholar
  35. Meaney, M. J. (2001). Maternal care gene expression and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 161–192.CrossRefGoogle Scholar
  36. Meaney, M. J., & Szyf, M. (2005). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7, 103–123.PubMedPubMedCentralGoogle Scholar
  37. Morgan, D. K., & Whitelaw, E. (2008). The case for transgenerational epigenetic inheritance in humans. Mammalian Genome, 19, 394–397.CrossRefPubMedGoogle Scholar
  38. Morris, K. V., & Mattick, J. S. (2014). The rise of regulatory RNA. Nature Reviews Genetics, 15, 423–437.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ng, R. K., & Gurdon, J. B. (2008). Epigenetic memory of an active state depends on H3.3 incorporation into chromatin in the absence of transcription. Nature Cell Biology, 10, 102–109.CrossRefPubMedGoogle Scholar
  40. Nightingale, K. P., Gendreizig, S., White, D. A., Bradbury, C., Hollfelder, F., & Turner, B. M. (2007). Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. The Journal of Biological Chemistry, 282, 4408–4416.CrossRefPubMedGoogle Scholar
  41. Nyholm, S. V., & McFall-Ngai, M. J. (2014). Animal development in a microbial world. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 260–273). Oxford University Press.Google Scholar
  42. Ooi, S. L., & Henikoff, S. (2007). Germline histone dynamics and epigenetics. Current Opinion in Cell Biology, 19, 257–265.CrossRefPubMedGoogle Scholar
  43. Pigliucci, M., & Müller, G. B. (2010). Evolution: The Extended Synthesis. Cambridge: MIT Press.CrossRefGoogle Scholar
  44. Rakyan, V. K., Down, T. A., Balding, D. J., & Beck, S. (2011). Epigenome-wide association studies for common human diseases. Nature Reviews Genetics, 12, 529–541.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rassoulzadegan, M. (2011). An evolutionary role for RNA-mediated epigenetic variation? In S. B. Gissis & E. Jablonka (Eds.), Transformations of Lamarckism. From Subtle Fluids to Molecular Biology, Vienna Series in Theoretical Biology (pp. 227–236). Cambridge: MIT Press.CrossRefGoogle Scholar
  46. Raveh-Sadka, T., Thomas, B. C., Singh, A., Firek, B., Brooks, B., Castelle, C. J., et al. (2015). Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. Elife, 4, e05477.CrossRefPubMedCentralGoogle Scholar
  47. Schmitz, R. J., Schultz, M. D., Lewsey, M. G., O’Malley, R. C., Urich, M. A., Libiger, O., Schork, N. J., & Ecker, J. R. (2011). Transgenerational Epigenetic Instability Is a Source of Novel Methylation Variants. Science, 334, 369–373.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sela, D. A., Li, Y., Lerno, L., et al. (2011). An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. The Journal of Biological Chemistry, 286, 11909–11918.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Seong, K.-H., Li, D., Shimizu, H., Nakamura, R., & Ishii, S. (2011). Inheritance of Stress-Induced, ATF-2-Dependent Epigenetic Change. Cell, 145, 1049–1061.CrossRefPubMedGoogle Scholar
  50. Siklenka, K., Erkek, S., Godmann, M., Lambrot, R., McGraw, S., Lafleur, C., et al. (2015). Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science, 350, aab2006–1–aab2006-12.CrossRefGoogle Scholar
  51. Švorcová, J. (2012). The phylotypic stage as a boundary of modular memory: non mechanistic perspective. Theory in Biosciences, 131, 31–42.CrossRefPubMedGoogle Scholar
  52. Turner, B. M. (2009). Epigenetic responses to environmental change and their evolutionary implications. Philosophical Transactions of the Royal Society B, 364, 3403–3418.CrossRefGoogle Scholar
  53. Verhoeven, K. J. F., Jansen, J. J., van Dijk, P. J., & Biere, A. (2010). Stress-induced DNA methylation changes and their heritability in asexual dandelions. The New Phytologist, 185, 1108–1118.CrossRefPubMedGoogle Scholar
  54. Waterland, R. A., & Jirtle, R. L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Molecular Cell. Biology, 23, 5293–5300.CrossRefGoogle Scholar
  55. Waterland, R. A., Kellermayer, R., Laritsky, E., Rayco-Solon, P., Harris, R. A., Travisano, M., Zhang, W., Torskaya, M. S., Zhang, J., Shen, L., Manary, M. J., & Prentice, A. M. (2010). Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genetics, 6, e1001252.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Allessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847–854.CrossRefPubMedGoogle Scholar
  57. Weaver, I. C. G., Champagne, F. A., Brown, S. E., Dymov, S., Sharma, S., Meaney, M. J., & Szyf, M. (2005). Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. Journal of Neuroscience, 25, 11045–11054.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Philosophy and History of Sciences, Charles UniversityPraha 2Czech Republic

Personalised recommendations