, Volume 9, Issue 1, pp 61–71 | Cite as

The Biosemiotic Concept of the Species

  • Kalevi Kull
Review Article


Any biological species of biparental organisms necessarily includes, and is fundamentally dependent on, sign processes between individuals. In this case, the natural category of the species is based on family resemblances (in the Wittgensteinian sense), which is why a species is not a natural kind. We describe the mechanism that generates the family resemblance. An individual recognition window and biparental reproduction almost suffice as conditions to produce species naturally. This is due to assortativity of mating which is not based on certain individual traits, but on the difference between individuals. The biosemiotic model described here explains what holds a species together. It also implies that boundaries of a species are fundamentally fuzzy, and that character displacement occurs in case of sympatry. Speciation is a special case of discretisation that is an inevitable result of any communication system in work. The biosemiotic mechanism provides the conditions and communicative restrictions for the origin and persistence of diversity in the realm of living (communicative and semiotic) systems.


Assortative mating Biparentality Character displacement Family resemblance Recognition window Species problem 



I thank Hugh Paterson and the late John Maynard Smith for inspiring discussions, and Ene-Reet Soovik and Timo Maran for technical help. The work is related to IUT2-44.


  1. Blevins, J., & Wedel, A. (2009). Inhibited sound change: an evolutionary approach to lexical competition. Diachronica, 26(2), 143–183.CrossRefGoogle Scholar
  2. Brown, W. L., & Wilson, E. O. (1956). Character displacement. Systematic Zoology, 5, 49–64.CrossRefGoogle Scholar
  3. Dobzhansky, T., Ayala, F. J., Stebbins, G. L., & Valentine, J. W. (1977). Evolution. San Francisco: Freeman.Google Scholar
  4. de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56(6), 879–886.CrossRefPubMedGoogle Scholar
  5. Ghiselin, M. T. (1997). Metaphysics and the origin of species. New York: State University of New York Press.Google Scholar
  6. Gorelick, R., & Heng, H. H. Q. (2011). Sex reduces genetic variation: A multidisciplinary review. Evolution, 65, 1088–1098.CrossRefPubMedGoogle Scholar
  7. Grant, P. R., & Grant, B. R. (1989). Sympatric speciation and Darwin’s finches. In: Otte and Endler 1989: 433–457.Google Scholar
  8. Grant, P. R., & Grant, B. R. (1997). Hybridization, sexual imprinting, and mate choice. American Naturalist, 149, 1–28.CrossRefGoogle Scholar
  9. Grant, B. R., & Grant, P. R. (2010). Songs of Darwin’s finches diverge when a new species enters the community: implications for speciation. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20156–20163.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gyllenberg, M., Hemminki, J., & Tammaru, T. (1999). Allee effects can both conserve and create spatial heterogeneity in population densities. Theoretical Population Biology, 56, 231–242.CrossRefPubMedGoogle Scholar
  11. Konuma, J., & Chiba, S. (2007). Ecological character displacement caused by reproductive interference. Journal of Theoretical Biology, 247(2), 354–364.CrossRefPubMedGoogle Scholar
  12. Krementsov, N. L. (1994). Dobzhansky and Russian entomology: The origin of his ideas on species and speciation. In M. B. Adams (Ed.), The evolution of Theodosius Dobzhansky: Essays on his life and thought in Russia and America (pp. 31–48). Princeton: Princeton University Press.Google Scholar
  13. Krzeszowski, T. P. (1990). Contrasting languages: The scope of contrastive linguistics. (Trends in linguistics: studies and monographs 51.). Berlin: Mouton de Gruyter.CrossRefGoogle Scholar
  14. Kull, K. (1988a). The origin of species: A new view. In K. Kull & T. Tiivel (Eds.), Lectures in theoretical biology (pp. 73–77). Tallinn: Valgus.Google Scholar
  15. Kull, K. (1988b). Vidovaya differentsiatsiya kak rezul’tat biparental’nogo razmnozheniya [Species differentiation as a result of biparental reproduction]. In T. Sutt (Ed.), Aktual’nye voprosy evolyutsionnoj biologii [Current problems in evolutionary biology] (pp. 35–45). Tartu: ZBI.Google Scholar
  16. Kull, K. (1993). Recognition concept of species and a mechanism of speciation. Folia Baeriana, 6, 133–140.Google Scholar
  17. Kull, K. (2014). Adaptive evolution without natural selection. Biological Journal of the Linnean Society, 112(2), 287–294.CrossRefGoogle Scholar
  18. Kunz, W. (2012). Do species exist? Principles of taxonomic classification. Wiley: Weinheim.CrossRefGoogle Scholar
  19. Lambert, D. M., & Spencer, H. G. (Eds.). (1995). Speciation and the recognition concept: Theory and application. Baltimore: The Johns Hopkins University Press.Google Scholar
  20. Mallet, J. (2013). Darwin and species. In M. Ruse (Ed.), The Cambridge encyclopedia of Darwin and evolutionary thought (pp. 109–115). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Mayr, E. (1963). Animal species and evolution. Cambridge: The Belknap Press of Harvard University Press.CrossRefGoogle Scholar
  22. Mayr, E. (1999) [1942]. Systematics and the origin of species from the viewpoint of a zoologist. Cambridge: Harvard University Press.Google Scholar
  23. Mizak, M. (2005). Why Wittgenstein? Family resemblances. Lingua ac Communitas, 15, 51–70.Google Scholar
  24. Otte, D., & Endler, J. A. (Eds.). (1989). Speciation and its consequences. Sunderland: Sinauer.Google Scholar
  25. Paterson, H. E. H. (1993). Evolution and the recognition concept of species. (McEvey, S. F., Ed.). Baltimore: The J. Hopkins University Press.Google Scholar
  26. Pavlinov, I. Y. (Ed.). (2013). The species problem – ongoing issues. Rijeka: InTech.Google Scholar
  27. Petersen, W. (1903). Entstehung der Arten durch physiologische Isolierung. Biologisches Centralblatt, 23, 468–477.Google Scholar
  28. Petersen, W. (1905a). Ueber die Bedeutung der Generationsorgane für die Entstehung der Arten. In M. Bedot (Ed.), Compte-rendu des séances du sixième Congrès international de zoologie, tenu à Berne du 14 au 16 août 1904 (pp. 213–224). Genève: Imprimerie W. Kündig & Fils.Google Scholar
  29. Petersen, W. (1905b). Über beginnende Art-Divergenz (Hadena adusta Esp. — Lepidopt.). Archiv für Rassen- und Gesellschaftsbiologie, 2, 641–662.Google Scholar
  30. Pfennig, D. W., & Pfennig, K. S. (2010). Character displacement and the origins of diversity. American Naturalist, 176(supplement), s26–s44.Google Scholar
  31. Pigliucci, M. (2003). Species as family resemblance concepts: the (dis-)solution of the species problem? BioEssays, 25(6), 596–602.CrossRefPubMedGoogle Scholar
  32. Rieseberg, L. H., Wood, T. E., & Baack, E. J. (2006). The nature of plant species. Nature, 440(7083), 524–527.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schult, J. (1992). Species, signs, and intentionality. In T. A. Sebeok & J. Umiker-Sebeok (Eds.), Biosemiotics: The Semiotic Web 1991 (pp. 317–332). Berlin: Mouton de Gruyter.Google Scholar
  34. Stamos, D. N. (2003). The species problem: Biological species, ontology, and the metaphysics of biology. Lanham: Lexington Books.Google Scholar
  35. Tammaru, T. (1993a). Wilhelm Petersen as a biologist-theoretician. In K. Kull & T. Tiivel (Eds.), Lectures in theoretical biology: The second stage (pp. 122–128). Tallinn: Estonian Academy of Sciences.Google Scholar
  36. Tammaru, T. (1993b). Biparentality as a creator of non-uniformity in temporal structure of a population. Folia Baeriana, 6, 158–163.Google Scholar
  37. Wilkins, J. S. (2009). Species: A history of the idea. Berkeley: University of California Press.Google Scholar
  38. Wilson, R. A. (Ed.). (1999). Species: New interdisciplinary essays. Cambridge: MIT Press.Google Scholar
  39. Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of TartuTartuEstonia

Personalised recommendations