, Volume 8, Issue 2, pp 191–210 | Cite as

The Birth of the Holobiont: Multi-species Birthing Through Mutual Scaffolding and Niche Construction

  • Lynn ChiuEmail author
  • Scott F. Gilbert
Original Paper


Holobionts are multicellular eukaryotes with multiple species of persistent symbionts. They are not individuals in the genetic sense— composed of and regulated by the same genome—but they are anatomical, physiological, developmental, immunological, and evolutionary units, evolved from a shared relationship between different species. We argue that many of the interactions between human and microbiota symbionts and the reproductive process of a new holobiont are best understood as instances of reciprocal scaffolding of developmental processes and mutual construction of developmental, ecological, and evolutionary niches. Our examples show that mother, fetus, and different symbiotic microbial communities induce or constitute conditions for the development and reproduction of one another. These include the direct induction of maternal or fetus physiological changes, the restructuring of ecological relations between communities, and evolutionary selection against undesirable competitors. The mutual scaffolding and niche constructing processes start early—prior to amniotic rupture. We are evolutionarily, physiologically, and developmentally integrated holobiont systems, strung together through mutual reliance (developmental scaffolding) and mutual construction (niche construction). Bringing the processes of niche construction and developmental scaffolding together to interpret holobiont birth conceptually scaffolds two new directions for research: (1) in niche construction, identifying the evolutionary implications of organisms actively constructing multiple overlapping niches and scaffolds, and (2) in Evolutionary Developmental Biology, characterizing evolutionary and ecological processes as developmental causes.


Holobionts Birth Niche construction Developmental scaffolding Evolutionary Developmental Biology 



This paper is dedicated to the late Werner Callebaut, who commented on the penultimate draft and pointed us to related sources prior to his unexpected passing. We miss him greatly. LC would also like to thank André Ariew and Weijen Liu for helpful discussions and Greg Dupuy for editorial suggestions.

Compliance with Ethical Standards

SFG is funded by the Academy of Finland and Swarthmore College. Our research does not involve any human or animal participants.

Conflict of interest

There are no potential conflicts of interest.


  1. Aagaard, K., Riehle, K., Ma, J., Segata, N., Mistretta, T. A., Coarfa, C., et al. (2012). A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One, 7(6).Google Scholar
  2. Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J. & Versalovic, J. (2014). The placenta harbors a unique microbiome. Science Translational Medicine, 6(237).Google Scholar
  3. Ardeshir, A., Narayan, N. R., Méndez-Lagares, G., Lu, D., Rauch, M., Huang, Y., et al. (2014). Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Science Translational Medicine, 6(252).Google Scholar
  4. Aydede, M., & Robbins, P. (Eds.). (2009). The Cambridge handbook of situated cognition. Cambridge: Cambridge University Press.Google Scholar
  5. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915–1920.PubMedGoogle Scholar
  6. Bickhard, M. H. (1992). Scaffolding and self scaffolding: Central aspects of development. In L. T. Winegar & J. Valsiner (Eds.), Children’s development within social contexts: Research and methodology (pp. 33–52). Hillsdale: Erlbaum.Google Scholar
  7. Bickhard, M. H. (2005). Functional scaffolding and self-scaffolding. New Ideas in Psychology, 23(3), 166–173.Google Scholar
  8. Blute, M. (2008). Is it time for an updated ‘Eco-Evo-Devo’ definition of evolution by natural selection? Spontaneous Generations: A Journal for the History and Philosophy of Science, 2(1), 1.Google Scholar
  9. Brandon, R. N. (1990). Adaptation and environment. Princeton: Princeton University Press.Google Scholar
  10. Brucker, R. M., & Bordenstein, S. R. (2013). The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia. Science, 341(6146), 667–669.PubMedGoogle Scholar
  11. Callebaut, W. (2007). Herbert Simon’s silent revolution. Biological Theory, 2(1), 76–86.Google Scholar
  12. Caporael, L. R. (2013). Evolution, groups, and scaffolded minds. In L. R. Caporael, J. R. Griesemer & W. C. Wimsatt (Eds.), Developing scaffolds in evolution, culture, and cognition (pp. 57–76).Google Scholar
  13. Caporael, L. R., Griesemer, J. R. & Wimsatt, W. C. (Eds.). (2013). Developing scaffolds in evolution, culture, and cognition. MIT Press:Cambridge.Google Scholar
  14. Cash, H. L., Whitham, C. V., Behrendt, C. L., & Hooper, L. V. (2006). Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 313(5790), 1126–1130.PubMedCentralPubMedGoogle Scholar
  15. Chichlowski, M., De Lartigue, G., Bruce German, J., Raybould, H. E., & Mills, D. A. (2012). Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. Journal of Pediatric Gastroenterology and Nutrition, 55(3), 321–327.PubMedCentralPubMedGoogle Scholar
  16. Chu, H., & Mazmanian, S. K. (2013). Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nature Immunology, 14(7), 668–675.PubMedCentralPubMedGoogle Scholar
  17. Clark, A. (1989). Microcognition. Cambridge: MIT Press.Google Scholar
  18. Clark, A. (2006). Language, embodiment, and the cognitive niche. Trends in Cognitive Sciences, 10(8), 370–374.PubMedGoogle Scholar
  19. Conroy, M. E., Shi, H. N., & Walker, W. A. (2009). The long-term health effects of neonatal microbial flora. Current Opinion in Allergy and Clinical Immunology, 9(3), 197–201.PubMedGoogle Scholar
  20. Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M., & Relman, D. A. (2012). The application of ecological theory toward an understanding of the human microbiome. Science, 336(6086), 1255–1262.PubMedCentralPubMedGoogle Scholar
  21. Day, R. L., Laland, K. N., & Odling-Smee, F. J. (2003). Rethinking adaptation: the niche-construction perspective. Perspectives in Biology and Medicine, 46(1), 80–95.PubMedGoogle Scholar
  22. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 11971–11975.PubMedCentralPubMedGoogle Scholar
  23. Donohue, K. (2005). Niche construction through phenological plasticity: life history dynamics and ecological consequences. New Phytologist, 166(1), 83–92.PubMedGoogle Scholar
  24. Douglas, A. E. (2010). The symbiotic habit. Princeton: Princeton University Press.Google Scholar
  25. Dunbar, H. E., Wilson, A. C. C., Ferguson, N. R., & Moran, N. A. (2007). Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biology, 5(5), 1006–1015.Google Scholar
  26. Flynn, E. G., Laland, K. N., Kendal, R. L., & Kendal, J. R. (2013). Target article with commentaries: developmental niche construction. Developmental Science, 16(2), 296–313.PubMedGoogle Scholar
  27. Franzenburg, S., Walter, J., Künzel, S., Wang, J., Baines, J. F., Bosch, T. C., & Fraune, S. (2013). Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proceedings of the National Academy of Sciences of the United States of America, 110(39), E3730–3738.PubMedCentralPubMedGoogle Scholar
  28. Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., et al. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469(7331), 543–549.PubMedGoogle Scholar
  29. Funkhouser, L. J. & Bordenstein, S. R. (2013). Mom knows best: the universality of maternal microbial transmission. PLoS Biol, 11(8): e1001631.Google Scholar
  30. Garrido, D., Barile, D., & Mills, D. A. (2012). A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Advances in Nutrition, 3(3), 415S–421S.PubMedCentralPubMedGoogle Scholar
  31. Gilbert, S. F. (2014a). A holobiont birth narrative: The epigenetic transmission of the human microbiome. Frontiers in Genetics, 5.282. doi: 10.3389/fgene.2014.00282.
  32. Gilbert, S. F. (2014b). Symbiosis as the way of eukaryotic life: the dependent co-origination of the body. Journal of Biosciences, 39(2), 201–209.PubMedGoogle Scholar
  33. Gilbert, S. F., & Epel, D. (2009). Ecological developmental biology. Sunderland: Sinauer Associates.Google Scholar
  34. Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of life: we have never been individuals. Quarterly Review of Biology, 87(4), 325–341.PubMedGoogle Scholar
  35. Godfrey-Smith, P. (1998). Complexity and the function of mind in nature. New York: Cambridge University Press.Google Scholar
  36. Godfrey-Smith, P. (2001). Organism, environment, and dialectics. In R. S. Singh, C. B. Krimbas, D. B. Paul, & J. Beatty (Eds.), Thinking about evolution: Historical, philosophical, and political perspectives (pp. 253–266). New York: Cambridge University Press.Google Scholar
  37. Good, M., Siggers, R. H., Sodhi, C. P., Afrazi, A., Alkhudari, F., Egan, C. E., et al. (2012). Amniotic fluid inhibits Toll-like receptor 4 signaling in the fetal and neonatal intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11330–11335.PubMedCentralPubMedGoogle Scholar
  38. Griesemer, J. R. (2014a). Reproduction and scaffolded developmental processes: An integrated evolutionary perspective. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 183–202). Oxford: Oxford University Press.Google Scholar
  39. Griesemer, J. R. (2014b). Reproduction and the scaffolded development of hybrids. In L. R. Caporael, J. R. Griesemer & W. C. Wimsatt (Eds.), Developing scaffolds in evolution, culture, and cognition (pp. 23–55). MIT Press.Google Scholar
  40. Haig, D. (1993). Genetic conflicts in human pregnancy. Quarterly Review of Biology, 68(4), 495–532.PubMedGoogle Scholar
  41. Haig, D. (2000). The kinship theory of genomic imprinting. Annual Review of Ecology and Systematics, 31, 9–32.Google Scholar
  42. Haig, D. (2004). Genomic imprinting and kinship: how good is the evidence? Annual Review of Genetics, 38, 553–585.PubMedGoogle Scholar
  43. Haig, D. (2010). Transfers and transitions: parent-offspring conflict, genomic imprinting, and the evolution of human life history. Proceedings of the National Academy of Sciences of the United States of America, 107(SUPPL. 1), 1731–1735.PubMedCentralPubMedGoogle Scholar
  44. Haig, D. (2014). Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity, 113(2), 96–103.PubMedCentralPubMedGoogle Scholar
  45. Hooper, L. V., Wong, M. H., Thelin, A., Hansson, L., Falk, P. G., & Gordon, J. I. (2001). Molecular analysis of commensal host-microbial relationships in the intestine. Science, 291(5505), 881–884.PubMedGoogle Scholar
  46. Hooper, L. V., Stappenbeck, T. S., Hong, C. V., & Gordon, J. I. (2003). Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunology, 4(3), 269–273.PubMedGoogle Scholar
  47. Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463.PubMedCentralPubMedGoogle Scholar
  48. Huang, L., Chen, Q., Zhao, Y., Wang, W., Fang, F. & Bao, Y. (2014). Is elective cesarean section associated with a higher risk of asthma? A meta-analysis. Journal of Asthma (0), 1–10.Google Scholar
  49. Jakobsson, H. E., Abrahamsson, T. R., Jenmalm, M. C., Harris, K., Quince, C., Jernberg, C., et al. (2014). Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut, 63(4), 559–566.PubMedGoogle Scholar
  50. Jiménez, E., Marín, M. L., Martín, R., Odriozola, J. M., Olivares, M., Xaus, J., et al. (2008). Is meconium from healthy newborns actually sterile? Research in Microbiology, 159(3), 187–193.PubMedGoogle Scholar
  51. Jones, C. G., Lawton, J. H. & Shachak, M. (1996). Organisms as ecosystem engineers. In Ecosystem management (pp. 130–147). Springer-Verlag: New York.Google Scholar
  52. Kendal, J., Tehrani, J. J., & Odling-Smee, F. J. (2011). Human niche construction in interdisciplinary focus. Philosophical Transactions of the Royal Society, B: Biological Sciences, 366(1566), 785–792. doi: 10.1098/rstb.2010.0306.PubMedCentralGoogle Scholar
  53. Kirsh, D., & Maglio, P. (1994). On distinguishing epistemic from pragmatic action. Cognitive Science, 18(4), 513–549.Google Scholar
  54. Koren, O., Goodrich, J. K., Cullender, T. C., Spor, A., Laitinen, K., Kling Bäckhed, H., et al. (2012). Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell, 150(3), 470–480.PubMedCentralPubMedGoogle Scholar
  55. Kylafis, G., & Loreau, M. (2008). Ecological and evolutionary consequences of niche construction for its agent. Ecology Letters, 11(10), 1072–1081.PubMedGoogle Scholar
  56. Kylafis, G., & Loreau, M. (2011). Niche construction in the light of niche theory. Ecology Letters, 14(2), 82–90.PubMedGoogle Scholar
  57. Laland, K. N., & O’Brien, M. J. (2010). Niche construction theory and archaeology. Journal of Archaeological Method and Theory, 17(4), 303–322.Google Scholar
  58. Laland, K. N., & Sterelny, K. (2006). Perspective: seven reasons (not) to neglect niche construction. Evolution, 60(9), 1751–1762. doi: 10.1111/j.0014-3820.2006.tb00520.x.PubMedGoogle Scholar
  59. Laland, K. N., Odling-Smee, F. J., & Gilbert, S. F. (2008). EvoDevo and niche construction: building bridges. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 310B(7), 549–566. doi: 10.1002/jez.b.21232.Google Scholar
  60. Laland, K. N., Sterelny, K., Odling-Smee, F. J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: is Mayr’s proximate-ultimate dichotomy still useful? Science, 334(6062), 1512–1516. doi: 10.1126/science.1210879.PubMedGoogle Scholar
  61. Laland, K. N., Odling-Smee, F. J., & Turner, S. (2014). The role of internal and external constructive processes in evolution. Journal of Physiology, 592(11), 2413–2422.PubMedCentralPubMedGoogle Scholar
  62. Landmann, F., Foster, J. M., Michalski, M. L., Slatko, B. E., & Sullivan, W. (2014). Co-evolution between an endosymbiont and its nematode host: Wolbachia asymmetric posyterior localization and AP polarity establishment. PLoS Neglected Tropical Diseases, 8(8), e3096. doi: 10.1371/journal.pntd.0003096.PubMedCentralPubMedGoogle Scholar
  63. Le Huërou-Luron, I., Blat, S., & Boudry, G. (2010). Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutrition Research Reviews, 23(1), 23–36.PubMedGoogle Scholar
  64. Lee, S. M., Donaldson, G. P., Mikulski, Z., Boyajian, S., Ley, K., & Mazmanian, S. K. (2013). Bacterial colonization factors control specificity and stability of the gut microbiota. Nature, 501(7467), 426–429.PubMedCentralPubMedGoogle Scholar
  65. Lehmann, L. (2007). The evolution of trans-generational altruism: Kin selection meets niche construction. Journal of Evolutionary Biology, 20(1), 181–189.PubMedGoogle Scholar
  66. Levins, R., & Lewontin, R. C. (1985). The dialectical biologist. Cambridge: Harvard University Press.Google Scholar
  67. Lewontin, R. C. (1978). Adaptation. Scientific American, 239, 157.Google Scholar
  68. Lewontin, R. C. (1982). Organism and environment. In H. C. Plotkin (Ed.), Learning, development and culture (pp. 151–170). Chichester: Wiley.Google Scholar
  69. Lewontin, R. C. (2000). The triple helix: Gene, organism and environment. Cambridge: Harvard University Press.Google Scholar
  70. Lewontin, R. C. (2001 [1983]). Gene, organism, and environment. In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution. Cambridge: The MIT Press.Google Scholar
  71. Lewontin, R. C. (2001). Gene, organism, and environment: A new introduction. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 55–57). Cambridge: The MIT Press.Google Scholar
  72. Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124(4), 837–848.PubMedGoogle Scholar
  73. Lievin, V., Peiffer, I., Hudault, S., Rochat, F., Brassart, D., Neeser, J. R., et al. (2000). Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 47(5), 646–652.PubMedCentralPubMedGoogle Scholar
  74. MacDorman, M. F., Declercq, E., Menacker, F., & Malloy, M. H. (2006). Infant and neonatal mortality for primary cesarean and vaginal births to women with “no indicated risk,” United States, 1998–2001 birth cohorts. Birth, 33(3), 175–182.PubMedGoogle Scholar
  75. Makino, H., Kushiro, A., Ishikawa, E., Muylaert, D., Kubota, H., Sakai, T., et al. (2011). Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Applied and Environmental Microbiology, 77(19), 6788–6793.PubMedCentralPubMedGoogle Scholar
  76. Makino, H., Kushiro, A., Ishikawa E., Kubota, H., Gawad, A., et al. (2013) Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota. PLoS ONE 8(11), e78331Google Scholar
  77. Martirosian, G., Kuipers, S., Verbrugh, H., Van Belkum, A., & Meisel-Mikolajczyk, F. (1995). PCR ribotyping and arbitrarily primed PCR for typing strains of Clostridium difficile from a Polish maternity hospital. Journal of Clinical Microbiology, 33(8), 2016–2021.PubMedCentralPubMedGoogle Scholar
  78. McCutcheon, J. P., & Von Dohlen, C. D. (2011). An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Current Biology, 21(16), 1366–1372.PubMedCentralPubMedGoogle Scholar
  79. McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Lošo, T., Douglas, A. E., et al. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3229–3236.PubMedCentralPubMedGoogle Scholar
  80. Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E., & Ochman, H. (2005). The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 16919–16926.PubMedCentralPubMedGoogle Scholar
  81. Niess, J. H., Leithäuser, F., Adler, G., & Reimann, J. (2008). Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. Journal of Immunology, 180(1), 559–568.Google Scholar
  82. Ochman, H., Worobey, M., Kuo, C. H., Ndjango, J. B., Peeters, M., Hahn, B. H., & Hugenholtz, P. (2010). Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biology, 8(11), e1000546.PubMedCentralPubMedGoogle Scholar
  83. Odling-Smee, F. J. (1988). Niche-constructing phenotypes. In H. C. Plotkin (Ed.), The role of behavior in evolution (pp. 73–132). Cambridge: MIT Press.Google Scholar
  84. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (1996). Niche construction. The American Naturalist, 147(4), 641–648. doi: 10.2307/2463239.Google Scholar
  85. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton: Princeton University Press.Google Scholar
  86. Odling-Smee, F. J., Erwin, D. H., Palkovacs, E. P., Feldman, M. W., & Laland, K. N. (2013). Niche construction theory: a practical guide for ecologists. The Quarterly Review of Biology, 88(1), 3–28. doi: 10.1086/669266.Google Scholar
  87. Oliver, K. M., Degnan, P. H., Hunter, M. S., & Moran, N. A. (2009). Bacteriophages encode factors required for protection in a symbiotic mutualism. Science, 325(5943), 992–994.PubMedGoogle Scholar
  88. Otto, M. (2014). Physical stress and bacterial colonization. FEMS Microbiology Reviews, 38(6), 1250–1270.PubMedGoogle Scholar
  89. Pradeu, T. (2011). A mixed self: the role of symbiosis in development. Biological Theory, 6(1), 80–88.Google Scholar
  90. Prince, A. L., Antony, K. M., Chu, D. M. & Aagaard, K. M. (2014). The microbiome, parturition, and timing of birth: more questions than answers. Journal of Reproductive Immunology. 104–105:12–9. doi: 10.1016/j.jri.2014.03.006.
  91. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59–65.PubMedCentralPubMedGoogle Scholar
  92. Rhee, K. J., Sethupathi, Driks, A., Lanning, D. K., & Knight, K. L. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. Journal of Immunology, 172(2), 1118–1124.Google Scholar
  93. Romero, R., Hassan, S. S., Gajer, Tarca, A. L., Fadrosh, D. W., Nikita, L., et al. (2014). The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2(1), 4.PubMedCentralPubMedGoogle Scholar
  94. Round, J. L., O’Connell, R. M., & Mazmanian, S. K. (2010). Coordination of tolerogenic immune responses by the commensal microbiota. Journal of Autoimmunity, 34(3), J220–J225.PubMedCentralPubMedGoogle Scholar
  95. Sadedin, S. (2014). War in the womb: A ferocious biological struggle between mother and baby belies any sentimental ideas we might have about pregnancy. Aeon Magazine. Accessed 20 Oct 2014
  96. Saltz, J. B., & Foley, B. R. (2011). Natural genetic variation in social niche construction: social effects of aggression drive disruptive sexual selection in Drosophila melanogaster. The American Naturalist, 177(5), 645–654.PubMedGoogle Scholar
  97. Saltz, J. B., & Nuzhdin, S. V. (2014). Genetic variation in niche construction: implications for development and evolutionary genetics. Trends in Ecology and Evolution, 29(1), 8–14.PubMedGoogle Scholar
  98. Schell, M. A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., et al. (2002). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14422–14427.PubMedCentralPubMedGoogle Scholar
  99. Scott‐Phillips, T. C., Laland, K. N., Shuker, D. M., Dickins, T. E., & West, S. A. (2014). The niche construction perspective: a critical appraisal. Evolution, 68(5), 1231–1243.PubMedCentralPubMedGoogle Scholar
  100. Sela, D. A., Chapman, J., Adeuya, A., Kim, J. H., Chen, F., Whitehead, T. R., et al. (2008). The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18964–18969.PubMedCentralPubMedGoogle Scholar
  101. Sela, D. A., Li, Y., Lerno, L., Wu, S., Marcobal, AM., German, JB., et al. (2011). An infantassociated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem. 286: 11909–11918.Google Scholar
  102. Sharon, G., Segal, D., Ringo, J. M., Hefetz, A., Zilber-Rosenberg, I., & Rosenberg, E. (2010). Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 20051–20056.PubMedCentralPubMedGoogle Scholar
  103. Simon, H. A. (1983). Reason in human affairs. Stanford: Stanford University Press.Google Scholar
  104. Simon, H. A. (1996). The sciences of the artificial. Cambridge: MIT press.Google Scholar
  105. Smith, M. I., Yatsunenko, T., Manary, M. J., Trehan, I., Mkakosya, R., Cheng, J., et al. (2013). Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science, 339(6119), 548–554.PubMedCentralPubMedGoogle Scholar
  106. Stappenbeck, T. S., Hooper, L. V., & Gordon, J. I. (2002). Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15451–15455.PubMedCentralPubMedGoogle Scholar
  107. Sterelny, K. (2003). Thought in a hostile world: The evolution of human cognition. Oxford: Wiley-Blackwell.Google Scholar
  108. Sterelny, K. (2006). ‘Cognitive Load and Human Decision, or, Three Ways of Rolling the Rock Up Hill’, in Peter Carruthers, Stephen Laurence, Stephen Stich (ed.), The Innate Mind: 2: Culture and Cognition, Oxford University Press, United States, pp. 218–233.Google Scholar
  109. Sterelny, K. (2010). Minds: extended or scaffolded? Phenomenology and the Cognitive Sciences, 9(4), 465–481.Google Scholar
  110. Tannock, G. W., Fuller, R., & Pedersen, K. (1990). Lactobacillus succession in the piglet digestive tract demonstrated by plasmid profiling. Applied and Environmental Microbiology, 56(5), 1310–1316.PubMedCentralPubMedGoogle Scholar
  111. Tauber, A. I. (2008a). Expanding immunology: defensive versus ecological perspectives. Perspectives in Biology and Medicine, 51(2), 270–284.Google Scholar
  112. Tauber, A. I. (2008b). The immune system and its ecology. Philosophy of Science, 75(2), 224–245.Google Scholar
  113. Tauber, A. I. (2012). The biological notion of self and non-self. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2012 Edition ed.)
  114. Thavagnanam, S., Fleming, J., Bromley, A., Shields, M. D., & Cardwell, C. R. (2008). A meta-analysis of the association between Caesarean section and childhood asthma. Clinical and Experimental Allergy, 38(4), 629–633.PubMedGoogle Scholar
  115. Tolman, E. C., & Brunswik, E. (1935). The organism and the causal texture of the environment. Psychological Review, 42(1), 43.Google Scholar
  116. Trivers, R. L. (1974). Parent-offspring conflict. Integrative and Comparative Biology, 14(1), 249–264.Google Scholar
  117. Turner, J. S. (2009). The extended organism: The physiology of animal-built structures. Harvard University Press,Cambridge.Google Scholar
  118. Tuteur, A. (2009). Does C-section increase the rate of neonatal death? Accessed 19 Oct 2014.
  119. Underwood, M. A., Kalanetra, K. M., Bokulich, N. A., Lewis, Z. T., Mirmiran, M., Tancredi, D. J., et al. (2013). A comparison of two probiotic strains of bifidobacteria in premature infants. Journal of Pediatrics, 163(6), 1585–1591. e1589.PubMedGoogle Scholar
  120. van Baalen, M., & Huneman, P. (2014). Organisms as ecosystems/ecosystems as organisms. Biological Theory, 9, 357–360.Google Scholar
  121. Walsh, D. (2009). A commentary on Blute’s ‘updated definition’. Spontaneous Generations: A Journal for the History and Philosophy of Science, 2(1), 6.Google Scholar
  122. Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 3698–3703.PubMedCentralPubMedGoogle Scholar
  123. Wright, J. P., & Jones, C. G. (2006). The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience, 56(3), 203–209.Google Scholar
  124. Yoshida, E., Sakurama, H., Kiyohara, M., Nakajima, M., Kitaoka, M., Ashida, H., et al. (2012). Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology, 22(3), 361–368.PubMedGoogle Scholar
  125. Zivkovic, A. M., German, J. B., Lebrilla, C. B., & Mills, D. A. (2011). Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 108(SUPPL. 1), 4653–4658.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of MissouriColumbiaUSA
  2. 2.Department of BiologySwarthmore CollegeSwarthmoreUSA

Personalised recommendations