Advertisement

Biosemiotics

, Volume 6, Issue 3, pp 585–606 | Cite as

From Sound to Music: An Evolutionary Approach to Musical Semantics

  • Mark Reybrouck
Original Paper

Abstract

This paper holds an evolutionary approach to musical semantics. Revolving around the nature/nurture dichotomy, it considers the role of the dispositional machinery to respond to sounding stimuli. Conceiving of music as organized sound, it stresses the dynamic tension between music as a collection of vibrational events and their potential of being structured. This structuring, however, is not gratuitous. It depends on levels of processing that rely on evolutionary older levels of reacting to the sounds as well as higher-level functions of the brain, which allow listeners to emancipate themselves from mere acoustic processing of sounds to the level of epistemic interactions with the sounding music. These interactions are partly autonomous and partly constrained, but they all stress the realization of systemic cognition in the context of a living system‘s interactions with the environment. As such, listeners can be conceived as adaptive devices, which can build up new semiotic linkages with the sounding world.

Keywords

Musical epistemology Musical sense-making Nature/nurture Biology/culture Music and evolution Adaptive behavior Musical universals Music and emotion 

References

  1. Abler, W. (1989). On the particulate principle of self-diversifying systems. Journal of Social and Biological Structures, 12, 1–13.CrossRefGoogle Scholar
  2. Balkwill, L.-L., & Thompson, W. (1999). A cross-cultural investigation of the perception of emotion in music: psychophysical and cultural cues. Music Perception, 17, 43–64.CrossRefGoogle Scholar
  3. Barkow, J. H., Cosmides, L., & Tooby, J. (1992). The Adapted Mind: Evolutionary Psychology and the Generation of Culture. Oxford: Oxford University Press.Google Scholar
  4. Bispham, J. (2009–2010). Music’s “design features”: Musical motivation, musical pulse, and musical pitch. Musicae Scientiae, Special Issue 2009–2010, 41–61.Google Scholar
  5. Blacking, J. (1973). How Musical is Man? Seattle: Universtiy of Washington Press.Google Scholar
  6. Blacking, J. (1987). A common-sense view of all music. Reflections on Percy Grainger's contribution to ethnomusicology and music education. Cambridge: Cambridge University Press.Google Scholar
  7. Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences United State of America, 98, 11818–11823.Google Scholar
  8. Blacking, J. (1995). Music, Culture and Experience. London: University of Chicago Press.Google Scholar
  9. Bown, O. & Wiggins, G. (2009–2010). From Maladaptation to Competition to Cooperation in the Evolution of Musical Behaviour. Musicae Scientiae, Special Issue 2009–2010, 387–411.Google Scholar
  10. Bregman, A. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, Massachusetts: The MIT Press.Google Scholar
  11. Brown, S. (2000). Evolutionary models of music: from sexual selection to group selection. Perspectives in Ethology, 13(13), 231–281.CrossRefGoogle Scholar
  12. Brown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. NeuroReport, 15, 2033–2037.PubMedCrossRefGoogle Scholar
  13. Bruner, J. (1957). On perceptual readiness. Psychological Review, 64, 123–152.PubMedCrossRefGoogle Scholar
  14. Bühler, K. (1965 [1934]). Sprachtheorie: die Darstellungsfunktion der Sprache. Stuttgart: Gustav Fischer.Google Scholar
  15. Burkhardt, R. W. (2005). Patterns of behavior. Chicago: University of Chicago Press.Google Scholar
  16. Clynes, M. (1973). Sentics: biocybernetics of emotion communication. Annals of the New York Academy of Sciences, 220(3), 55–131.PubMedGoogle Scholar
  17. Clynes, M. (1977). Sentics, the touch of emotion. Anchor, New York: Doubleday.Google Scholar
  18. Clynes, M., & Walker, J. (1986). Music as time's measure. Music Perception, 4(1), 85–120.CrossRefGoogle Scholar
  19. Cross, I. (2001a). Music, Cognition, Culture, and Evolution. In Peretz, I. & Zatorre, R. (Eds.). The Biological Foundations of Music. Annals of the New York Academy of Science, 930, 28–42.Google Scholar
  20. Cross, I. (2001b). Music, mind and evolution. Psychology of Music, 29, 95–102.CrossRefGoogle Scholar
  21. Cross, I. (2003a). Music and evolution: consequences and causes. Contemporary Music Review, 22(3), 79–89.CrossRefGoogle Scholar
  22. Cross, I. (2003b). Music, Cognition, Culture, and Evolution. In I. Peretz & R. Zatorre (Eds.), The Cognitive Neuroscience of Music (pp. 42–56). Oxford - New York: Oxford University Press.CrossRefGoogle Scholar
  23. Cross, I. (2009–2010). The evolutionary nature of musical meaning. In I. Deliège (Ed), Music and Evolution (pp.179–200). Musicae Scientiae, Special issue 2009–2010.Google Scholar
  24. D’Errico, F., Henshilwood, C., Lawson, G., Vanhaeren, M., Tillier, A.-M., Soressi, M., et al. (2003). Archeological evidence for the emergence of language, symbolism, and music-an alternative multidisciplinary perspective. Journal of World Prehistory, 17, 1–70.CrossRefGoogle Scholar
  25. Damasio, A. (1994). Descartes’ Error: Emotion, Reason, and the Human Brain. New York: Harper Collins.Google Scholar
  26. Damasio, A. (2004). Looking for Spinoza. Joy, Sorrow and the Feeling Brain. London: Vintage.Google Scholar
  27. Dean, R., Byron, T., & Bailes, F. (2009–2010). The Pulse of Symmetry: On the Possible Co-Evolution of Rhythm in Music and Dance. In I. Deliège (Ed), Music and Evolution (pp. 341–367). Musicae Scientiae, Speciall issue 2009–2010.Google Scholar
  28. Dissanayake, E. (2000). Antecedents of the temporal arts in early mother-infant interactions. In N. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 389–407). Cambridge, MA: MIT Press.Google Scholar
  29. Drake, C., & Bertrand, D. (2003). The Quest for Universals in Temporal Processing in Music. In I. Peretz & R. Zatorre (Eds.), The Cognitive Neuroscience of Music (pp. 21–31). Oxford - New York: Oxford University Press.CrossRefGoogle Scholar
  30. Dretske, F. (1985). Précis of Knowledge and the Flow of Information. In H. Kornblith (Ed.), Naturalizing Epistemology (pp. 169–187). Cambridge/London: MIT Press.Google Scholar
  31. Durham, W. (1991). Coevolution: Genes, Culture and Human Diversity. Stanford, CA: Stanford University Press.Google Scholar
  32. Edelman, G. (1987). Neural Darwinism. The Theory of Neuronal Group Selection. New York: Oxford University Press.Google Scholar
  33. Edelman, G. (1992). Bright air, brilliant fire: On the matter of mind. New York: Basis Books.Google Scholar
  34. Ehlich, K. (1982). Anaphora and Deixis: Same, Similar, or Different? In R. J. Jarvella & W. Klein (Eds.), Speech, Place and Action. Studies in Deixis and Related Topics (pp. 315–338). Chichester – New York: John Wiley & Sons.Google Scholar
  35. Feldman, M. W., & Laland, K. N. (1996). Gene-culture coevolutionary theory. Trends in Ecology and Evolution, 11, 453–457.PubMedCrossRefGoogle Scholar
  36. Fillmore, C. (1982). Towards a Descriptive Framework for Spatial Deixis. In R. Jarvella & W. Klein (Eds.), Speech, Place, and Action. Studies in Deixis and Related Topics (pp. 31–59). Chichester - New York: John Wiley.Google Scholar
  37. Fleagle, J. (1999). Primate adaptation and Evolution. San Diego: Academic.Google Scholar
  38. Frayer, D. W., Nicolay, C., & Wallin, N. (2000). Fossil Evidence for the Origin of Speech Sounds. In B. Merker & S. Brown (Eds.), The Origins of Music (pp. 271–300). Cambridge, MA - London: The MIT Press.Google Scholar
  39. Frick, R. (1985). Communicating emotion: the role of prosodic features. Psychological Bulletin, 97, 412–429.CrossRefGoogle Scholar
  40. Gabrielsson, A., & Lindström, E. (2001). The Influence of Musical Structure on Emotional Expression. In P. N. Juslin & J. Sloboda (Eds.), Music and Emotion: Theory and Research (pp. 223–248). Oxford: Oxford University Press.Google Scholar
  41. Goldschmidt, W. (1959). Man’s Way: A Preface to the Understanding of Human Society. New York: Holt.Google Scholar
  42. Gould, S. (1977). Ontogeny and Phylogeny. Cambridge (MA): The Belknap Press of Harvard University Press.Google Scholar
  43. Gould, S., & Vrba, S. (1982). Exaptation — a missing term in the science of form. Paleobiology, 8, 4–15.Google Scholar
  44. Gratier, M. (1999). Expressions of belonging: the effect of acculturation on the rhythm and harmony of mother-infant interaction. Musicae Scientiae, Special Issue, 1999, 93–122.Google Scholar
  45. Handel, S. (1989). Listening. An Introduction to the Perception of Auditory Events. Cambridge - London: MIT Press.Google Scholar
  46. Hauser, M. D. (1996). Evolution of communication. Cambridge, MA: MIT Press.Google Scholar
  47. Hauser, M., & McDermott, J. (2003). The evolution of the music faculty: a comparative perspective. Nature Neuroscience, 6(7), 663–668.PubMedCrossRefGoogle Scholar
  48. Huron, D. (2003). Is Music an Evolutionary Adaptation? In I. Peretz & R. Zatorre (Eds.), The Cognitive Neuroscience of Music (pp. 57–75). Oxford - New York: Oxford University Press.CrossRefGoogle Scholar
  49. Imberty, M. (1979). Entendre la musique. Sémantique psychologique de la musique. Paris: Bordas.Google Scholar
  50. Jürgens, U., & Hage, S. R. (2007). On the role of the reticular formation in vocal pattern generation. Behavioral Brain Research, 182, 308–314.CrossRefGoogle Scholar
  51. Juslin, P. (2001). Communicating Emotion in Music Performance: A Review of and Theoretical Framework. In P. N. Juslin & J. Sloboda (Eds.), Music and Emotion: Theory and Research (pp. 309–337). Oxford: Oxford University Press.Google Scholar
  52. Juslin, P. N., & Sloboda, J. (Eds.). (2001). Music and Emotion: Theory and Research. Oxford: Oxford University Press.Google Scholar
  53. Kita, S. (2003). Pointing. Where Language, Culture, and Cognition Meet. Mahwah (N.J.): Erlbaum.Google Scholar
  54. Krumhansl, C. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press.Google Scholar
  55. Krumhansl, C. (1997). An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology, 51, 336–353.PubMedCrossRefGoogle Scholar
  56. Langacker, R. (1987). Foundations of cognitive grammar (Vol. 1). Stanford CA: Stanford University Press.Google Scholar
  57. Lehman, C., Welker, L., & Schiefenhövel, W. (2009–2010). Towards an Ethology of Song: A categorization of musical behaviour. In I. Deliège (Ed), Music and Evolution (pp. 321–338). Musicae Scientiae, Special issue 2009–2010.Google Scholar
  58. Leroy, J.-L. (dir.) (2013). Actualités des Universaux en Musique/Topics in Universals in Music. Paris: Edition des Archives Contemporaines.Google Scholar
  59. Levitin, D. (2006). This Is Your Brain On Music: The Science of a Human Obsession. New York: Penguin.Google Scholar
  60. Lumsden, C., & Wilson, E. (1981). Genes, Mind and Culture. Cambridge: Harvard University Press.Google Scholar
  61. Lynch, M. P., Eilers, R. E., Oller, D. K., & Urbano, R. C. (1990). Innateness, experience, and music perception. Psychological Science, 7, 272–276.CrossRefGoogle Scholar
  62. Martin, S. (1978). Le langage musical. Sémiotique des systèmes. Paris: Klincksieck.Google Scholar
  63. Masataka, N. (1999). Preference for infant-directed singing in 2-day-old hearing infants of deaf parents. Developmental Psychology, 35(4), 1001–1005.PubMedCrossRefGoogle Scholar
  64. McDermott, J., & Hauser, H. M. (2005). The origins of music: Innateness, uniqueness and evolution. Music Perception, 23, 29–60.CrossRefGoogle Scholar
  65. Menon, V., & Levitin, D. J. (2005). The rewards of music listening: response and physiological connectivity of the mesolimbic system. NeuroImage, 28, 175–184.PubMedCrossRefGoogle Scholar
  66. Merker, B. (2002). Music: the missing Humboldt system. Musicae Scientiae, V1(1), 3–21.Google Scholar
  67. Merriam, A. P. (1964). The Anthropologu of Music. Evanston, Ill: Northwestern University Press.Google Scholar
  68. Miereanu, C., & Hascher, X. (Eds.). (1998). Les Universaux en musique, Actes du 4e Congrès international sur la signification musicale. Paris: Publications de la Sorbonne.Google Scholar
  69. Miller, G. (2000). Evolution of human music through sexual selection. In N. L. Wallin, B. Merker, & S. Brown (Eds.), The Origins of Music (pp. 329–360). Cambridge, MA: MIT Press.Google Scholar
  70. Mithen, S. (2005). The singing Neanderthal: The origins of music, language, mind and body. London: Weidenfeld and Nicolson.Google Scholar
  71. Molino, J. (2000). Toward an Evolutionary Theory of Music and Language. In N. Wallin, B. Merker, & S. Brown (Eds.), The Origins of Music (pp. 165–176). Cambridge, MA - London: The MIT Press.Google Scholar
  72. Nettl, B. (2000). An Ethnomusicologist Contemplates Universals in Musical Sound and Musical Cultures. In N. Wallin, B. Merker, & S. Brown (Eds.), The Origins of Music (pp. 463–479). Cambridge, MA - London: The MIT Press.Google Scholar
  73. Nettl, B., & Bohlman, P. V. (1991). Comparative Musicology and the Anthropology of Music. Chicago: University of Chicago Press.Google Scholar
  74. Newman, J. D. (Ed.). (1988). The physiological control of mammalian vocalizations. New York: Plenum.Google Scholar
  75. Newman, J. D. (2007). Neural circuits underlying crying and cry responding in mammals. Behavioral Brain Research, 182, 155–165.CrossRefGoogle Scholar
  76. Oatley, K. (1992). Best Laid Schemes. The psychology of the Emotions. Cambridge: Cambridge University Press.Google Scholar
  77. Panksepp, J. (1995). The emotional sources of ‘chills’ induced by music. Music Perception, 13, 171–207.CrossRefGoogle Scholar
  78. Panksepp, J. (2005). Affective consciousness: core emotional feelings in animals and humans. Consciousness and Cognition, 14, 30–80.PubMedCrossRefGoogle Scholar
  79. Panksepp, J. (2009–2010). The emotional antecedents to the evolution of music and language. In I. Deliège (Ed), Music and Evolution (pp. 229–259). Musicae Scientiae, Special issue 2009–2010.Google Scholar
  80. Panksepp, J., & Bernatzky, G. (2002). Emotional sounds and the brain: the neuro-affective foundations of musical appreciation. Behavioural Processes, 60, 133–155.PubMedCrossRefGoogle Scholar
  81. Parncutt, R. (2009–2010). Prenatal and infant conditioning, the mother schema, and the origins of music and religion. In I. Deliège (Ed.) Music and Evolution (pp. 119–250). Musicae Scientiae, Special Issue 2009–2010.Google Scholar
  82. Patel, A. (2006). Musical rhythm, linguistic rhythm, and human evolution. Music Perception, 24, 99–104.CrossRefGoogle Scholar
  83. Pattee, H. (1995). Artificial life needs a real epistemology. In F. Moran, A. Moreno, J. Merelo, & P. Chacon (Eds.), Advances in Artificial Life. Lecture notes in artificial intelligence (pp. 23–38). Berlin: Springer.Google Scholar
  84. Peretz, I. (2001). Listen to the brain: a biological perspective on musical emotions. In P. N. Juslin & J. Sloboda (Eds.), Music and Emotion: Theory and Research (pp. 105–134). Oxford: Oxford University Press.Google Scholar
  85. Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100, 1–32.PubMedCrossRefGoogle Scholar
  86. Peretz, I., & Morais, J. (1989). Music and modularity. Contemporary Music Review, 4, 277–291.CrossRefGoogle Scholar
  87. Piaget, J. (1967). Biologie et connaissance. Essai sur les relations entre les régulations organiques et les processus cognitifs. Paris: Gallimard.Google Scholar
  88. Pinker, S. (1997). How the Mind Works. New York: Norton.Google Scholar
  89. Reybrouck, M. (1999). The musical sign between sound and meaning. In I. Zannos (Ed.), Music and Signs, Semiotic and Cognitive Studies in Music (pp. 39–58). Bratislava: ASCO Art & Science.Google Scholar
  90. Reybrouck, M. (2001a). Biological roots of musical epistemology: functional cycles, umwelt, and enactive listening. Semiotica, 134(1–4), 599–633.Google Scholar
  91. Reybrouck, M. (2001b). Musical Imagery between Sensory Processing and Ideomotor Simulation. In R. I. Godøy & H. Jörgensen (Eds.), Musical Imagery (pp. 117–136). Lisse: Swets & Zeitlinger.Google Scholar
  92. Reybrouck, M. (2004). Music cognition, semiotics and the experience of time. Ontosemantical and epistemological claims. Journal of New Music Research, 33(4), 411–428.CrossRefGoogle Scholar
  93. Reybrouck, M. (2005a). A biosemiotic and ecological approach to music cognition: event perception between auditory listening and cognitive economy. Axiomathes. An International Journal in Ontology and Cognitive Systems, 15(2), 229–266.Google Scholar
  94. Reybrouck, M. (2005b). Body, mind and music: musical semantics between experiential cognition and cognitive economy. Trans. Transcultural Music Review, 9. Retrieved from: http://www.sibetrans.com/trans/trans9/reybrouck.htm.
  95. Reybrouck, M. (2006). Musical creativity between symbolic modelling and perceptual constraints: The role of adaptive behaviour and epistemic autonomy. In I. Deliège & G.Wiggins (Eds.), Musical creativity: Multidisciplinary research in theory and practice (pp. 42–59). Oxford: Psychology Press.Google Scholar
  96. Reybrouck, M. (2008). The musical code between nature and nurture. In M. Barbieri (Ed.), The codes of life: The rules of macroevolution (pp. 395–434). Dordrecht: Springer.Google Scholar
  97. Reybrouck, M. (2009). Similarity perception as a cognitive tool for musical sense-making: deictic and ecological claims. Musicae Scientiae. Discussion Forum, 4B, 99–118.Google Scholar
  98. Reybrouck, M. (2010). Music cognition and real-time listening: denotation, cue abstraction, route description and cognitive maps. Musicae scientiae; special issue, 1009–2010, 187–202.Google Scholar
  99. Rouget, G. (1985). Music and trance: A theory of the music and relations between music and possession. Chicago: University of Chicage Press.Google Scholar
  100. Scherer, K. R., & Zentner, K. R. (2001). Emotional effects of music: production rules. In P. N. Juslin & J. A. Sloboda (Eds.), Music and emotion: Theory and research (pp. 361–392). Oxford: Oxford University Press.Google Scholar
  101. Serra, M.-H. (1997). Introducing the phase vocoder. In C. Roads, S. Pope, A. Piccialli, & G. de Poli (Eds.), Musical signal processing (pp. 31–90). Lisse: Swets & Zeitlinger.Google Scholar
  102. Sloboda, J. (1991). Music structure and emotional response: some empirical findings. Psychology of Music, 19, 110–120.CrossRefGoogle Scholar
  103. Trainor, L. J., & Schmidt, L. A. (2003). Processing emotions induced by music. In I. Peretz & R. Zatorre (Eds.), The cognitive neuroscience of music (pp. 310–324). Oxford - New York: Oxford University Press.Google Scholar
  104. Trainor, L. J., & Trehub, S. E. (1992). A comparison of infants’ and adults’ sensitivity to Western musical structure. Journal of Experimental Psychology: Human Perception and Performance, 18, 394–402.PubMedGoogle Scholar
  105. Trainor, L. J., Clark, E. D., Huntley, A., & Adams, B. (1997). The acoustic basis of preferences for infant-directed singing. Infant Behavior & Development, 20, 383–396.CrossRefGoogle Scholar
  106. Trehub, S. (2000). Human processing predispositions and musical univerals. In N. Wallin, B. Merker, & S. Brown (Eds.), The origins of music (pp. 427–448). Cambridge, MA - London: The MIT Press.Google Scholar
  107. Trehub, S. (2003a). Musical predispositions in infancy: an update. In I. Peretz & R. Zatorre (Eds.), The cognitive neuroscience of music (pp. 3–20). Oxford: Oxford University Press.Google Scholar
  108. Trehub, S. (2003b). The developmental origins of musicality. Nature Neuroscience, 6, 669–673.PubMedCrossRefGoogle Scholar
  109. Trehub, S., & Hannon, E. (2006). Infant music perception: domaingeneral or domain-specific mechanisms? Cognition, 100, 73–99.Google Scholar
  110. Uttal, W. (1978). The psychobiology of mind. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  111. Uttal, W. (1998). Toward a new behaviorism. The case against perceptual reductionism. Mahwah (NJ) - London: Lawrence Erlbaum Publishers.Google Scholar
  112. Vygotsky, L. (1962). Thought and Language. Cambridge (MA): MIT Press.CrossRefGoogle Scholar
  113. Vygotsky, L. (1978). Mind in Society. The Development of Higher Psychological Processes (Eds. Cole, J. & Souberman, E). Cambridge (MA) - London, Harvard University Press.Google Scholar
  114. Wallin, N. (1991). Biomusicology. Neurophysiological and Evolutionary Perspectives on the origins and Purposes of Music. New York: Pendragon Press.Google Scholar
  115. Wallin, N. L., Merker, B. M., & Brown, S. B. (2000). The origins of music (pp. 389–410). Cambridge, Mass: MIT Press.Google Scholar
  116. Watkins, A. J., & Dyson, M. C. (1985). On the Perceptual Organisation of Tone Sequences and Melodies. In P. Howell, I. Cross, & R. West (Eds.), Musical Structure and Cognition (pp. 71–119). London: Academic.Google Scholar
  117. Whitehead, A. N. (1927). Symbolism. Its Meaning and Effect. New York: Capricorn Books.Google Scholar
  118. Whitehead, A. N. (1968). Modes of Thought. New York: The Free Press.Google Scholar
  119. Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Science of the USA, 106, 2468–2471.Google Scholar
  120. Winkler, I., Kushnerenko, E., Horváth, J., Čeponiene R., Fellman, V., Huotilainen, M., et al. (2003) Newborn infants can organize the auditory world. Proceedings of the National Academy of Science of the USA, 100, 1182–1185Google Scholar
  121. Zatorre, R. J., & Peretz, I. (Eds.) (2001). The biological foundations of music. Annals of the New York Academy Sciences, 930, 1–456.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of LeuvenLeuvenBelgium

Personalised recommendations